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ABSTRACT

Social networks encode important information about the relationships between

individuals. The structure of social networks has important implications for how

ideas, information, and even diseases spread within a population. Data on online

social networks is becoming increasingly available, but fine-grained data from which

physical proximity networks can be inferred is still a largely elusive goal. We address

this problem by using nearly 20 million anonymized login records from University of

Iowa Hospitals and Clinics to construct healthcare worker (HCW) contact networks.

These networks serve as proxies for potentially disease-spreading contact patterns

among HCWs. We show that these networks exhibit properties similar to social

networks arising in other contexts (e.g., scientific collaboration, friendship, etc.) such

as the “Six Degrees of Kevin Bacon” (i.e., small-world) phenomenon. In order to

develop a theoretic framework for analyzing these HCW contact networks we consider

a number of random graph models and show that models which only pay attention

to local structure may not adequately model disease spread. We then consider the

best known approximation algorithms for a number of optimization problems that

model the problem of determining an optimal set of HCWs to vaccinate in order to

minimize the spread of disease. Our results show that, in general, the quality of

solutions produced by these approximations is highly dependent on the dynamics of

disease spread. However, experiments show that simple policies, like vaccinating the

most well-connected or most mobile individuals, perform much better than a random
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vaccination policy. And finally we consider the problem of finding a set of individuals

to act as indicators for important healthcare related events on a social network for

infectious disease experts. We model this problem as a generalization of the budgeted

maximum coverage problem studied previously and show that in fact our problem is

much more difficult to solve in general. But by exposing a property of this network,

we provide analysis showing that a simple greedy approach for picking indicators

provides a near-optimal (constant-factor) approximation.
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Barabási-Albert (BA) models. x-axis denotes the degree. y-axis denotes
the fraction of nodes. Plot is truncated; maximum values can be found in
Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Degree distributions for the moderate50 HCW contact network and corre-
sponding graphs generated by the Erdös-Rényi (ER), Chung-Lu (CL), and
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CHAPTER 1
INTRODUCTION

There are many aspects of social networks that make them a useful tool in the

field of epidemiology. And while there are a number of important developments to

have come out of social network research relating to disease diffusion, there are also a

number pitfalls when employing them on real-world social networks. In this work we

address the problems of generating social networks that approximate close-proximity

interaction from fine-grained spatiotemporal data, accurately modeling important

aspects of these networks, and using these networks to improve decisions about vac-

cination policies and disease surveillance.

Social networks represent the relationships between individuals of a popula-

tion. Online social networks (e.g., Facebook, Okrut, Baidu, etc.) replicate the struc-

ture of real-life relationships, which can be as strong as family members or as weak

as acquaintances. This social structure can also be due to well-defined interactions

such as communication over email [58], collaboration on a scientific publication [9],

or the observed friendship between individuals [111].

Interest in social networks has a long history starting with famous experiments

by Milgram [72] that suggested any two individuals were separated by “six degrees

of separation” through acquaintances. In 1977 Zachary [111] observed that the split

of a karate club was dictated by the structure of the friendship network. Barabasi

et al. [9] use social networks to study the evolution of scientific collaboration. More

recently Mas and Moretti [66] used social networks representing line-of-sight visibility
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of coworkers for cashiers in a grocery store to study peer effects on productivity.

This is only a small sample of literature on social networks. A substantially broader

treatment can be found in [79, 33].

Commonly, social networks are modeled as a graph G = (V,E), with vertex set

V , representing some population, and edge set E, representing relationships within

this population. Modeling social networks in this way allows the use of network

analysis techniques to understand these social relationships.

One of the major discoveries from analysis of these graph models of social

networks was discovery of the “small-world” property by Watts and Strogatz [109].

The “small-world” property of social networks is a formalization of the conjecture by

Milgram and suggests that any two individuals are separated by only a few connec-

tions, despite participating in a network that is only sparsely connected. Watts and

Strogatz also showed that social networks tend to be highly clustered, with pairs of

vertices sharing many of the same neighbors (i.e., your friends are also friends). Many

social networks, such as the graph of the web, also evince a signature heavy-tailed

degree distribution where a majority of vertices have a low degree and a few vertices

have a very high degree [11]. More recently, Girvan and Newman [46] showed that a

number of social networks have strong community structure. A more global property

of clustering, strong community structure suggests that there are densely connected

clusters (communities) of vertices and very few connections between clusters [81, 29].

Since disease spreads through close-proximity contact between individuals,

social networks defined by physical proximity can provide valuable insights into how
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disease spreads. Motivated by the problem of reducing hospital acquired infections

we examine four aspects of using social networks for epidemiology.

1.1 Hospital Acquired Infections

Nosocomial (hospital-acquired) infections are a major cause of morbidity and

mortality in United States hospitals, causing up to an estimated 80,000 deaths a year

[103, 52]. Nosocomial diarrhea due to Clostridium difficile is estimated to cost US

hospitals over 1.1 billion dollars annually [62]. Usually hospital acquired infections

enter a hospital through patients who, during their care, spread the disease to a

healthcare worker (HCW). Infected HCWs then, in treating other patients and inter-

acting with other HCWs, spread disease throughout the hospital. In the case of an

outbreak of a nosocomial infection, the hospital can employ strategies for controlling

the outbreak such as isolation [53], quarantining, sending infected HCWs home, or in

certain circumstances, patient cohorting. These types of interventions can be mod-

eled as optimization problems on social networks where the objective is to remove

disease transmission pathways (edges) in order to separate sets of individuals (nodes).

But for patient care, quarantine and isolation are problematic; isolation and quaran-

tine severely degrade the level of patient care because HCWs are less willing to use

additional precautions (respirators, gowns, gloves, etc.) required to treat patients in

isolation.

Ideally it is better to simply prevent these outbreaks from happening. Some

hospitals have instituted policies such as HCW uniform requirements, equipment
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sterilization, hand hygiene requirements, and vaccination requirements as a means

of mitigating nosocomial infections. However, in most hospitals, hand hygiene and

vaccination are still voluntary and both suffer from non-compliance. Aside from non-

compliance, there are occasional vaccination shortages, notably in 2004 with influenza

vaccinations [67] and, more recently, in 2009 with H1N1 vaccinations.

One way to deal with non-compliance and vaccination shortages is to “target”

the right subset of HCWs for vaccination to protect the entire population. It has

been shown that vaccinating the right subset of a population can ultimately lead

to protection for the entire population, a phenomenon known as “herd immunity”

[41, 6, 18]. As we will show, the problem of determining the “right” people to vaccinate

can be modeled as an optimization problem. But solving optimization problems for

mitigating hospital acquired infections requires that we first have an understanding

of how disease spreads within the hospital environment.

1.2 Contact Network Epidemiology

The earliest models used to understand the diffusion of disease within a pop-

ulation were compartmental mathematical models such as SIR and its close relatives

SEIR, MSEIR, and more recently SZR [50, 77]. These models track the size of com-

partments that divide the population by their “state”: being either susceptible (S),

infected (I), or recovered (R). Compartmental models are based on the mass-action

principle where the number of cases is proportional to the product of the number

of infected and susceptible hosts. Recent research has shown that the mass-action
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principle can lead to inaccurate predictions, as demonstrated by the SARS outbreak

in China [69, 92]. A fundamental problem of these compartmental models is the as-

sumption of random mixing; infected individuals can spread disease to anyone else in

the population. In reality we know that individuals have distinct contact patterns of

whom they come into contact with.

Contact network epidemiology is a more powerful approach to studying disease

diffusion that uses social contact networks to model close-proximity interactions which

can lead to disease spread. For an outbreak of Severe Acute Respiratory Syndrome

(SARS) in China, Meyers et al. [71] showed that contact network epidemiology could

explain the inaccurate predictions by compartmental models which suggested a large

scale epidemic. Eubank et al. [37] used census, land-use, and population-mobility

data, to generate contact networks for the city of Portland, OR. Their experiments

on these networks suggest that early detection is key for employing targeted vacci-

nation. To study the spread of mycoplasma pneumoniae, Meyers et al. [70] modeled

the contact network of a hospital based on the assumption that patients are confined

to wards and disease is spread between wards by HCWs. They conclude that, given

a uniform distribution of HCWs to wards, limiting the number of wards visited by a

HCW and proper protection from airborne droplets are the best approaches to reduc-

ing spread of mycoplasma pneumoniae. Ueno and Masuda [105] simulated stochastic

SIR simulations on social contact networks, based on patient records for a 129 bed

Tokyo hospital with 500-600 employees, to study disease containment strategies. Un-

der a number of assumptions about the contact patterns of HCWs and patients, they
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conclude that physicians should be prioritized for vaccination. Most recently Pol-

green et al. [98] use contact networks gathered from observational data to show the

importance of contact structure for informing vaccination interventions.

One of the problems of research in contact network epidemiology is the lack of

reliable data from which to infer contact networks that are epidemiologically relevant.

There is now considerable research on the structure of online social networks (see for

example [4, 73, 56, 17]), but such online social networks are not always epidemiologi-

cally relevant and may be structurally very different from networks of HCWs induced

by spatiotemporal proximity. The contact networks used by Meyers et al. [70], Ueno

and Masada [105], and Polgreen et al. [98] are relatively small and constructed on the

basis of limited data, taking a rather coarse view of time and the hospital space in

which interactions take place. As a result, these approaches result in contact networks

that are either highly structured (e.g., consisting of a clique for each ward or unit)

or drawn at random from simple probability distributions. Neither of these types

of networks seem representative of the complexity of interactions that occur in real

hospital settings.

In Chapter 2, we present a comprehensive approach to constructing HCW

contact networks in a large hospital setting via the use of electronic medical records

(EMR). We apply this approach at the University of Iowa Hospitals and Clinics

(UIHC), a 3.2 million square foot facility with 700 beds and about 8,000 HCWs.

Using a data set of over 19.8 million EMR logins spanning more than 21 months

(Sept 1, 2006 through June 21, 2008), we construct 9,000 different HCW contact
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networks for the UIHC. These contact networks serve as realistic proxies for patterns

of actual HCW contacts and provide some of the most detailed views, as yet, of

contacts among hospital-based HCWs. Analysis of these contact networks reveals

that despite spatial and job-related constraints on HCW movement and interactions,

there is a surprising structural similarity between the HCW contact networks we

generate and social networks that arise in other settings (e.g., movie or scientific

collaborations, on-line friendships, etc. [4, 9, 58, 109]).

1.3 Random Graph Models for Contact Networks

Contact network structure plays a key role in how disease will spread on a

network [69, 84, 109]. With the exponential growth in the size of networks being

studied – compare the karate club graph of Zachary [111] in 1977 with 34 vertices and

78 edges to the web graph studied by Broder [19] in 2000 with 200 million vertices and

over 1.5 billion edges – it is no long possible to visually analyze structure. Modeling

networks as random graphs is a way to focus on the important structure aspects

while abstracting away the unimportant features. In addition, random graph models

can be used to predict properties of the class of networks represented by the model.

Thus, finding random graph models that accurately model real-life instances of social

networks are essential to the success of contact network epidemiology.

One of the major fallouts from the work by Watts and Strogatz [109] was

realization that real-world social networks have distinct structural differences from

the Erdös-Rényi random graphs. Thus, a lot of recent work has focused on the
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development of graph models that more accurately represent social networks. [61, 12,

89, 83, 8, 85, 87]. Development of accurate random graph models as primarily focused

on replicating the degree distribution of vertices, [14, 27, 75, 89]. Barabási and Albert

[13, 12] proposed a model for graphs with a power-law degree distribution in order to

capture the structure of the web graph. Considerable focus has been paid to random

graphs with an explicit degree sequence based on a model by Bender and Canfield

[14]. Molloy and Reed [75, 76] showed that there exists edge density threshold for

the emergence of a giant component. This work was extended by Newman [84] and

Meyers [69] who provide calculations for expected disease outbreak size. Chung and

Lu [27] propose a model for graphs with an expected degree distribution which was

extended by Eubank et al. [38] to model people and the locations they visit for the

city of Portland, OR. More recently, Newman [82] has proposed new graph models for

graphs with given degree sequence and neighbor correlations. Bansal and Meyers [8]

and Newman [87] have both introduced graph models that capture degree sequence

and vertex clustering.

In Chapter 3 we consider a number of candidate random graph models to de-

scribe our HCW contact networks. Our results show that simple random graph models

that only pay attention to local structure (i.e., mean degree and degree distribution)

fail to capture epidemiologically relevant aspects of the HCW contact networks, and

thus may be poor models for real world social networks in general. Moreover we

show compelling evidence that, for HCW contact networks, the correlation between

degrees of adjacent (neighboring) vertices plays an important role in disease diffu-
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sion. Finally, experiments on random graph models with clustering suggest that local

clustering does have a profound effect on the spread of disease.

1.4 Vaccination Policies

Vaccination is an easy way to prevent hospital acquired infections [100, 110].

Yet, non-compliance and vaccination shortages [67] remain a problem. Recent re-

search suggests that employing “targeted” vaccination strategies is a viable option

for protecting the entire population in spite of these problems [41, 6, 18]. However,

the effectiveness of targeted vaccination strategies require knowledge of who to vacci-

nate in order to minimize the spread of disease. Social contact networks and disease

diffusion models provide valuable insight into who these “key” individuals are.

If we suppose that disease diffusion is a dynamical process over a social contact

network G = (V,E), then there are two natural optimization problems that fall out.

The first problem, which we call budgeted vaccination, is to find key individuals to

target with vaccination in the case of vaccination shortages. That is, given a budget

b of vaccinations, find a size-b subset V � ⊆ V to vaccinate such that the number of

vertices infected as a result of disease diffusion on G \ V �, the graph resulting from

the removal of V � from G, is minimized. The second problem, which we call restricted

disease, is to minimize the number of individuals that need to be vaccinated in order

to “restrict” disease spread to a given size of the population. More precisely, given

integer budget k < |V |, find a minimum size subset of vertices V � ⊆ V whose removal

from G reduces the expected number of people infected as a result of a single infected
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individual is less than k.

Kempe et al. [54] have considered the influence maximization problem, similar

to budgeted vaccination, of finding a size-k subset S of individuals to “infect” with

an idea so as to maximize the number of individuals influenced as a result of a

“word-of-mouth” diffusion process over a social network. Supposing that the number

of influenced individuals is given by an oracle function f , they show that, for a

number of diffusion models, the simple greedy algorithm that continually adds to S

the individual that maximizes f(S) provides a near-optimal solution. Goyal et al. [48]

consider the dual problem of influence maximization, similar to restricted disease, of

finding the minimum size set of initial individuals to implant with an idea so that the

number of influenced individuals is above a given threshold. They show that, despite

its similarity to influence maximization, the problem is quite hard.

There has also been recent work done on game-theoretical aspects of vacci-

nation [7, 26]. Aspnes et al. [7] consider a game-theoretic model of vaccination

where individuals can choose to get vaccinated or not. Their main result suggests

that, left to their own devices, selfish individuals make decisions that are bad for

the whole. Under the assumption that disease spreads in a worst case fashion to

all unvaccinated individuals in the contact network, Aspnes et al. [7] introduce the

sum-of-squares partition problem. Given a graph G of n nodes and budget B, the

sum-of-squares partition problem is to find a set of B vertices whose removal from G

minimizes the size of the largest connected component. Aspnes et al. [7] show that

an O(log1.5(n))-approximation can be achieved in polynomial time.
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To solve problems like the budgeted vaccination and restricted disease prob-

lems, many researchers make significant assumptions about the behavior of disease

diffusion to make the problems more mathematically tractable. In Chapter 4 we con-

sider a number of graph optimization problems to act as surrogates for solutions to

the budgeted vaccination and restricted disease problems. We show that the quality

of the solutions provided by the surrogate optimization problems lead to solutions

that are poor solutions to the budgeted vaccination and restricted disease problems

in general. However, experiments on our HCW contact networks suggest that they

may be perfect candidates for these surrogate problems. As a consequence, a simple

greedy algorithm that picks the most well connected individuals (i.e., those having

high degree) provides a near optimal solution to budgeted vaccination and restricted

disease problems. Finally we compare a number of heuristic policies for vaccination on

the HCW contact networks we generate. Our results show evidence that vaccinating

the most “mobile” individuals may be an effective vaccination strategy.

1.5 Disease Surveillance

Disease surveillance and early detection of outbreaks may be one of the most

important disease control strategies [36, 95]. The Emerging Infections Network (EIN)

is a network of clinical infectious disease specialists created with the goal of assisting

the CDC and other public health authorities with surveillance of emerging infectious

diseases and related phenomena (new treatment protocols, possible side effects of new

vaccines, etc.). To achieve its goal, the EIN maintains a private listserv of over 1400
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infectious disease specialists, CDC investigators, and public health officials. Since its

inception, the EIN listserv has served over 2800 discussions on the identification of

new infectious diseases, treatments, and policy implications. Identifying important

topics of discussion on the EIN is currently ad hoc, done a list administrator reading

all discussions. There is significant interest in improving the accuracy and timeliness

with which this important information is identified so that it can be distributed to

the CDC and other healthcare organizations.

There are a number of approaches that have been taken previously to improve

disease surveillance methods. Polgreen et al. [95] considered the problem of finding

optimal placement to increase coverage of an influence surveillance network. They

show that maximum coverage models can greatly increase the coverage level for the

state of Iowa. Polgreen et al. [97] have considered the use of healthcare prediction

markets, emerging from economics [42], to give timely predictions based on healthcare

related forecasting. Other recent work has focused on using the collective wisdom of

crowds to track disease outbreaks using search engine queries [45, 93]. During the

H1N1 outbreak in 2009, a number of projects considered the use of Twitter posts to

track the spread of the infection [101].

Our solution to improve disease surveillance is to develop a simple procedure

for identifying discussions on the EIN that have the potential to become “important,”

and ignore threads that will remain “unimportant.” To solve this problem we leverage

the social network of individuals and their participation in threads, based on historical

EIN data, and identify a set of “bellwether” users who typically participate in the
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early stages of many important threads, but are involved in very few unimportant

threads. If we are able to identify such “bellwether” users, then tracking these users

can quickly point people who make policies to emerging important threads that are in

their early stages of evolution, without inundating them with irrelevant information.

A similar problem has been considered by Leskovec et al. [65] for the place-

ment of contamination sensors in a water distribution network. They show that this

approach can be extended to the unseemingly similar problem of selecting a set of

blogs to monitor so as to catch the maximum number of important news stories. More

recently El-Arini et al. [34] considered a similar problem of providing personalized

monitoring of the blogosphere, tailored to individual users. In both cases these prob-

lems can be formalized as instances of submodular maximization problems that have

a long history starting with Nemhauser et al. in 1978 [78]. For set U the function

f : 2U → R+ is said to be submodular if it exhibits the property of “diminishing

returns”: f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B ⊆ S. Nemhauser et al.

[78] consider the problem of finding a subset S ⊆ U of given cardinality which maxi-

mizes f(S) and show that a simple greedy algorithm that continually adds to S the

element u ∈ U which maximizes f(S ∪ {u})− f(S) provides a near-optimal solution.

Khuller et al. [55] extend this result to a problem budgeted maximum coverage where

each element u ∈ U has associated cost cu and the objective is to find subset S ⊂ U

such that f(U) is maximized and
�

u∈S cu ≤ b for some budget b. More advanced

constraints have also been shown to have near-optimal approximations [21, 20].

In Chapter 5 we show that the problem of determining “bellwether” users on



www.manaraa.com

14

the EIN can also be modeled as a generalization of budgeted maximization problem

that we call budgeted maximization with overlapping costs (BMOC). Due to its unique

cost structure, BMOC is fundamentally different than those applied previously and

thus simple greedy approaches do not work. In fact, a simple reduction to the densest

k-subhypergraph [49] problem shows that BMOC problem is very hard in general.

However, by identifying a possible feature of the EIN social network, which we call

the overlap condition, we show that for certain instances of BMOC a simple greedy

algorithm does provide a near-optimal (constant-factor) approximation. Finally, ex-

perimental runs of the greedy algorithm provide strong evidence that the EIN data

exhibits this overlap condition and thus solutions obtained are very close to optimal.
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CHAPTER 2
GENERATING HCW CONTACT NETWORKS

In this chapter we introduce a graph representation of spatial information

about the University of Iowa Hospitals and Clinics (UIHC) – a 3.2 million square foot

facility with 700 beds and about 8000 healthcare workers – and a set of over 19.8

million de-identified healthcare worker activity logs, based on login records for an

electronic medical records (EMR) system. Using these data we introduce a compre-

hensive method for constructing a healthcare worker (HCW) contact networks that

serve as proxies for contact patterns between HCWs. Analysis of the constructed con-

tact networks reveals that despite spatial and job-related constraints on healthcare

worker movement and interactions, there is a surprising structural similarity between

the healthcare contact networks we generate and social networks that arise in other

settings (e.g., movie or scientific collaborations, on-line friendships, etc.).

2.1 Constructing HCW Contact Networks

The biggest obstacle to using contact networks in epidemiology is the absence

of reliable data from which to infer contact networks that make epidemiological sense.

There is now considerable research on the structure of online social networks (see for

example, [4, 73, 56]) and on how information travels through these networks [57].

But such online social networks are not always epidemiologically relevant, as they are

not based on physical contact, and may be structurally very different from networks

induced by spatial proximity.
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login date & time logout date & time device location userID position & dept.

2006-09-01, 0:00:00.40 2006-09-01, 0:24:17.29 SKR925 STAFF NURSE I, NURSING
2006-09-01, 0:00:00.43 2006-09-01, 0:00:21.76 M95089 JPP 6750 SLB565 STAFF NURSE II, NURSING
2006-09-01, 0:00:01.23 2006-09-01, 0:03:55.21 HNH286 STAFF NURSE II, NURSING
2006-09-01, 0:00:02.29 2006-09-01, 0:00:14.81 MA1458 RCP 1100 K920 HOUSE STAFF III, NEUROLOGY
2006-09-01, 0:00:02.54 9-1-06, 0:46:37.82 B71118 RCP 1047 M811 HOUSE STAFF I, ETC

Figure 2.1: The first five of approximately 19.8 million EMR login records. The
UserIDs are all de-identified, although each de-identified user has an associated
position & dept field. The Device field provides computer IDs with associated
Location information. The Location field specifies rooms in the UIHC (e.g., RCP
1100 is room number 1100 in the Roy Carver Pavilion of the hospital). Note that
some of the records are missing the Device field, rendering them unusable for contact
graph construction. needed for contact network construction, still leaving about 11.7
million usable records.

In general, close physical proximity or contact with a common physical surface

(e.g., door knob or keyboard) is necessary for the spread of an infection. However,

data representing spatial proximity among members of a sizable population are hard

to come by. We deal with this problem by using EMR login data. Employees of the

UIHC use the EMR system multiple times over the course of a day and each “login

event” is recorded (see Figure 2.1). The EMR system uses an automatic logout

system, due to HIPPA rules, so login times correspond very closely to the times when

a HCW is physically at the login terminal.

Each event is logged by date, time, anonymized user ID, and location, pro-

viding a rich context from which to infer contact and movement. The aggregate

characteristics of these data given in Figure 2.2 show not only the large number of

healthcare workers (15,595) represented in this data, but also their diversity (80 de-

partments, 404 job titles). The 4,379 locations of the computers are well spread out

around the hospital. Most computers are located inside out-patient rooms, in clus-

ters just outside groups of in-patient rooms, at nurses’ stations, at the desks of unit
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records days users depts positions devices locations
19.8 million 660 15,595 80 404 17,522 4,379

Figure 2.2: Table showing the size and other aggregate characteristics of the EMR
login data.

clerks, and in doctors’ offices. This distribution of computers implies that healthcare

workers do not have to travel just to login to the EMR system and therefore strongly

suggests that locations of healthcare worker logins are well correlated with their daily

activities.

We construct the contact networks in two steps. In the first step, we construct

a detailed discrete spatial model of the UIHC space that allows us to determine spa-

tial proximity of login locations; this information is critical to the contact network

construction. The hospital model also allows us to estimate the mobility of health-

care workers, a measure that we use to inform vaccination policies. In the second

step, we parse EMR login data and construct various contact networks based on sev-

eral network generation parameters. These two steps are described in the next two

subsections.

2.1.1 The Hospital Graph

Eleven buildings or permanent additions connected by corridors make up the

main UIHC complex, which contains 3.2 million gross square feet and covers an area

of about 13.8 acres. The straight-line distance from the northern end of the complex

to the southern end is about 1,600 feet (roughly 0.3 miles or 3.6 blocks). The actual

walking distance through the corridor system is about 2,000 feet.
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We model this space as a graph whose vertices represent rooms and whose

edges represent adjacencies between rooms. Corridors and large spaces (e.g., atriums

and cafeterias) are partitioned into smaller spaces so that each vertex represents an

area of about the same size. The hospital graph allows us to approximate walking

distances in the hospital by hop distances in the graph (see Figures 2.3 and 2.4).

This discretization allows us to easily compute various distance-based characteristics

of the hospital. The hospital graph was constructed manually using data from two

sources provided by the UIHC: (i) a spreadsheet containing most of the rooms in

the hospital along with their names, floor numbers, area in square feet, and purpose,

(ii) architectural CAD drawings that showed blueprints of each of the floors. We

manually (and painstakingly!) extracted room adjacencies from the CAD drawings

and through a combination of manual and algorithmic efforts, we were also able to

extract approximate 3-dimensional coordinates for all the vertices in the hospital

graph (see Figure 2.5).

The graph we constructed has 19,554 vertices and 23,566 edges. Given the

3.2 million square foot area of the hospital, this implies that on average each vertex

corresponds to 163.65 square feet in area (i.e., a 12.5 foot × 12.5 foot room). Due

to discrepancies between the hospital room spreadsheet and the hospital CAD draw-

ings, the graph has a small number of small connected components and one “giant”

component with 18,961 vertices and 23,442 edges. We delete the small components

and take this giant component to be the hospital graph (see Figure 2.6). The hospital

graph essentially overlays a metric space (induced by pairwise hop-distances between
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Figure 2.3: A CAD drawing fragment for the basement (floor 0) of the hospital,
showing how it was marked up by hand in order to break up corridors into segments
that were approximately room-sized.

Figure 2.4: A small portion of the hospital graph, corresponding to the second floor of
the UIHC. The inset makes clear how each room or corridor segment is represented by
a vertex, connected by edges to adjacent rooms or corridor segments. This particular
image was produced by superimposing the graph onto a CAD drawing of the floor
plan.
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Figure 2.5: This picture shows the entire hospital graph superimposed on a 3-
dimensional architectural drawing of the hospital. The vertices are colored according
their building designator.

hospital vertices) on the UIHC facility and plays a critical role in a number of aspects

of our work where spatial proximity (or lack thereof) is important.

Vertices Edges Mean Degree Diameter Mean Path Length
18,961 23,442 1.236 137 102.39

Figure 2.6: Basic characteristics of the hospital graph. This graph has an average
degree of 1.236, which is consistent with our observation that most rooms have degree
one or two because they connect only to a corridor or to a corridor and a bathroom.

2.1.2 Extracting contacts

Fix a time window T that corresponds to a contiguous sequence of days during

the time period between 2006-09-01 and 2008-06-21, that we have login data for. For
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example, T could be the 4 week period starting on 2006-09-03 and ending on 2006-

09-30. Let V T denote the set of users who have logged into the EMR system at least

once during time window T . Fix parameters d ≥ 0 and t ≥ 0. Each healthcare worker

u ∈ V T has a set Lu of login sessions, where each login session I ∈ Lu is defined by its

start time s(I), its end time e(I), and its location or placement p(I). Two healthcare

workers u, v ∈ V T are connected by an edge if for some login sessions I ∈ Lu and

I � ∈ Lv, the distance in the hospital graph between p(I) and p(I �) is at most d hops

and the time interval [s(I)−t, e(I)+t] intersects the time interval [s(I �), e(I �)]. In other

words, u and v are connected by an edge if their login sessions occur within t time units

of each other and within d hops of each other in the hospital graph. The edge {u, v}

is assigned an edge-weight w(u, v) that is the number of distinct login sessions I and

I � that satisfy the above conditions. Thus w(u, v) represents the number of distinct

contacts between u and v, within the specified time window T , as indicated by their

login records. Varying the values of d and t allows us to consider alternate notions

of when a contact occurs. Specifically, as d and t increase, we essentially “loosen”

the definition of a contact, thus producing denser contact graphs. The d and t values

for which we have constructed various healthcare worker contact networks – a HCW

contact network, in short – are given in Figure 2.7). For our discussion we focus use

the names sparse
i
, moderatei, and densei to denote the HCW contact networks with

parameters (d = 1, t = 0, T = i), (d = 3, t = 15, T = i), and (d = 5, t = 30, T = i)

respectively. Example subgraphs for the sparse1, moderate1, and dense1 graphs are

given in Figure 2.8.
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Contact Network Generation Parameters Possible Values
d = maximum hop-distance between pairs of login locations 0, 1, 2, 3, 5
t = maximum time (in minutes) between pairs of logins 0, 5, 10, 15, 30
T = a 4-week time window completely within the period 000, 001, 002, . . . , 089

9-1-06 and 6-1-08 000 starts on 2006-09-01,
001 starts on 2006-09-08, etc.

Figure 2.7: The different parameters and their possible values that we use for gener-
ating healthcare worker contact networks. With 5 values for d, 5 for t, and 90 for T ,
all independently chosen, we obtain over 2,250 different healthcare contact networks.

(a) (b) (c)

Figure 2.8: Small section of HCW contact networks generated based on EMR login
data using different definitions of a contact. (a) Contact graph generated with d =
1, t = 0. (b) Contact graph generated with d = 3, t = 15. (c) Contact graph generated
with d = 5, t = 30.

2.1.3 HCW contact networks: discussion

The high resolution of our EMR login data allows us to extract from it encoun-

ters between pairs of healthcare workers who have “weak ties.” This might include

pairs of healthcare workers who work together only occasionally, e.g., to deal with

an unusual patient. Contacts between such pairs of healthcare workers could not

have been easily predicted by static, coarse-grained data, e.g., department affilia-

tions or job types. “Weak ties” influence the structure of contact networks in critical
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ways, significantly influencing the spread of disease. The high resolution of our data

also shows a great deal of diversity of movement and interactions among healthcare

workers within the same department and within the same job type. This is another

important outcome of our approach discussed with more detail in section 2.3.

We are aware of several problems with using HCW contact networks as a

proxy for patterns of actual healthcare worker contacts. These include the complete

absence of patients and certain categories of healthcare workers such as janitors and

transporters. Another problem is that certain healthcare worker behaviors that may

introduce a systematic bias in the EMR login data. For example, typically healthcare

workers visit patients in small groups during rounds and designate the junior-most

member as the person in-charge of updating the EMR system. This may cause a

relative absence of senior staff logins in the EMR login data, even though the senior

staff may be moving around the hospital and interacting with patients and other

healthcare workers as much as the junior staff.

We aim to address these problems in the future using a combination of new

data gathering techniques (e.g, having HCWs and patients wear wireless “badges”

that will record contacts) and further analysis of available data (e.g., patient admis-

sion and discharge data, out-patient load data, etc.). Recently we have made progress

implementing the wireless “badge” approach at the UIHC to detect the proximity of

individuals [31] and automate monitoring of HCW hand hygiene [96].
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Computers People average person degree average computer degree
4,861 6,875 14.13 (± std. dev. 25.832) 9.99 (± std. dev. 12.562)

Figure 2.9: These statistics show that the computers-people graph is relatively sparse
However, both person-degrees and computer-degrees show a large standard devia-
tion raising the possibility of a few heavily used computers and a few highly mobile
healthcare workers.

2.2 Computers-People Graph

An alternate graph-theoretic view that explicitly shows the interactions be-

tween healthcare workers and computers is the computers-people graph (see Figure

2.9 and Figure 2.10). The computers-people graph is a bipartite graph where one part

consists of healthcare workers and the other consists of computers. Roughly speaking,

an edge is placed between a healthcare worker and a computer if the computer was

used by that individual during a particular time window based on the EMR login

data. More precisely, fix a time window T and let UT be the set of computers which

had at least one login during time period T , and V T be the set of healthcare workers

that logged into the EMR system at least once during time period T . Each computer

u ∈ UT and each user v ∈ V T is connected by an edge {u, v} if v has logged into u at

least once during time period T . The edge {u, v} is assigned an edge-weight w(u, v)

equal to the number of times v has logged into u during time window T .

The computers-people graph encodes a variety of useful information. For

example, the degree of each healthcare worker in this graph captures the “login-

heterogeneity” patterns of a healthcare worker’s access the EMR. In Chapter 4 we

evaluate a vaccination policy in which healthcare workers with highest degree in the
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Figure 2.10: Small portion of a computers-people graph for a 4-week period. Com-
puters are marked by black dots and are shown in their actual location on the 4th
floor of the UIHC. Healthcare workers are shown as white dots and the edges connect
healthcare workers to the computers they have logged into during the 4-week time
window.

computers-people graph are vaccinated first and show that this policy also performs

much better than the policy that picks healthcare workers uniformly at random.

2.3 Analysis of HCW Contact Networks

One of the premises of contact network epidemiology is that individual contact

patterns can be quite diverse and this diversity substantially affects the spread of

infectious diseases. In their seminal paper, Watts and Strogatz [109] point out that

“real world” networks such as movie collaboration networks or the power grid network

in the Western United States have structural characteristics that are quite different

from those possessed by the well-known Erdös-Renyi random graph model [35]. The

Erdös-Renyi random graph model, denoted G(n, p), is an n-vertex graph in which

each pair of vertices u and v are independently connected by an edge with probability
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p. Thus the Erdös-Renyi model essentially takes all vertices and edges to be identical,

at least in a probabilistic sense. But, as observed by Watts and Strogatz [109] edges

and vertices in “real world” networks exhibit a lot of diversity. This also is the case

for the HCW contact networks that we generate.

Since the work of Watts and Strogatz [109], research on modeling social net-

works has taken off, initially spurred by the growth of the web and now by the

widespread use of online social networking sites such as Facebook, LinkedIn, MyS-

pace, Wikipedia, digg, del.icio.us, and even YouTube, and Flickr. This line of research

has focused on a number of structural features of social networks. We focus on three

features that seem most relevant from an epidemiological point of view: (i) degree dis-

tribution, (ii) small world property, and (iii) community structure. Figure 2.11 shows

statistics pertaining to these features for three representative HCW contact networks.

2.3.1 Degree Distributions

It is well-known that the degree distribution of the Erdös-Renyi random graph

G(n, p) is binomial (Poisson, in an asymptotic sense). The binomial distribution is

sharply concentrated about its mean yielding a small standard deviation. In all

three cases (sparse1, moderate1, and dense1), the standard deviation of the degree

distribution of the login contact graphs is much larger than that of the Erdös-Renyi

graphs (see rows corresponding to σ and σrand), indicating a degree distribution that

is much more dispersed than the binomial distribution. Also, the fraction of people
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sparse1 moderate1 dense1

n (num. vertices) 6,875 6,875 6,875
m (num. edges) 82,199 174,739 332,766
�k� (mean degree) 23.91 50.83 96.8
kmax (max. degree) 321 635 1,115

σ (std. dev. degree dist.) 32.84 62.86 113.877
σrand (std. dev. degree dist. G(n, p)) 4.90 7.06 9.77

cc (clust. coeff.) 0.3109 0.3906 0.4379
ccrand (clust. coeff. G(n, p)) 0.003516 0.007476 0.01414

c (num. components) 873 293 144
crand (num. components G(n, p)) 1 1 1
ngiant (num. vertices giant comp.) 5,838 (84.92%) 6,547 (95.23%) 6,702 (97.48%)
mgiant (num. edges giant comp.) 81,935 (99.68%) 174,687 (99.97%) 332,717 (99.98%)

diam (diam. giant comp.) 11 13 12
��� (ave. path len. giant comp.) 3.592 3.131 2.746

Figure 2.11: Basic structural features of a sparse1 (d = 1, t = 0), moderate1 (d = 3,
t = 15), and dense1 (d = 5, t = 30) instance of the HCW contact network are shown
here. Note that the dense graph is only dense relative to the sparse graph; the average
degree of even the dense graph is less than 1% of the graph size. For all three graphs
we use time window T = 001, i.e., a 4-week time window starting at the second week
of our EMR login data. For comparison, the corresponding statistics for Erdös-Renyi
random graphs with same size (n) and same mean degree (�k�) are also provided.

whose degree is no greater than the average vertex degree is 66.89% (sparse1), 64.97%

(moderate1), and 64.00% (dense1), pointing to a heavy tail in all of these cases.

The plots in Figure 2.12 confirm this. Figure 2.12(a) shows the log-log plot of the

degree distribution of the moderate1 HCW contact network, indicating quite clearly

that the distribution is heavy-tailed, covering close to three orders of magnitude and

indicating a high level of heterogeneity among healthcare workers. This has important

implications for infection control: if indeed a few people have lots of contacts, then

it seems natural to try and target this group for vaccination.

We have also analyzed the degree distributions of the HCW contact networks

with the aim of determining how well the popular heavy-tailed power-law distribution

and log-normal distribution [74] fit the observed degree distributions. Figure 2.12
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Figure 2.12: Degree distribution of the moderate1 HCW contact network and max
likelihood power-law (dashed line) and log-normal (light curve) fits. (a) log-log plot;
each point (d, p(d)) represents the fraction p(d) of healthcare workers with degree d
in the moderate HCW contact network. (b) cumulative form; each point (d, c(d))
represents the fraction c(d) of healthcare workers with degree at most d) is shown
here.

shows the fits visually for the moderate1 graph and both fits seem reasonable, espe-

cially when viewing the cumulative density function (cdf) plot (Figure 2.12(b)), with

the log-normal seeming to be a better fit. The plots for the sparse and dense case

are similar. For both power-law and log-normal fits, we select the optimal parame-

ter values for the distributions using a version of the maximum likelihood estimation

method suggested by Clauset et al. [28]. Notwithstanding the plots, the p-values from

a Kolmogorov-Smirnov test (following the approach of Clauset et al. [28]) indicate

that while neither power-law nor log-normal are particularly good fits for any of the

degree distributions, the log-normal distribution seems to be a marginally better fit

than power-law, at least for the sparse1 and moderate1 graphs.
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2.3.2 Community Structure

The clustering coefficient of a graph can be defined as follows. Let d be the

degree of a vertex v. The maximum number of edges possible between neighbors of

v is ∆ := d(d − 1)/2. The clustering coefficient of a vertex v, denoted cc(v) is the

ratio of the actual number of edges between neighbors of v to ∆. The clustering

coefficient of a graph is the average of cc(v) over all vertices v. In social networks,

cc(v) measures the extent to which people that v comes into contact with, also come

into contact with each other. In other words, cc(v) measures the extent to which

the neighborhood of v forms a community. One of the observations that motivated

the work of Watts and Strogatz [109] is that the real world networks they examined

had clustering coefficients that were orders of magnitude larger than the clustering

coefficient of the comparable Erdös-Renyi graphs. A comparison between cc and

ccrand in Figure 2.11 shows that this is the case for the HCW contact networks as

well.

Communities need not be restricted to neighborhoods in a network and an

additional property of social networks that has attracted a lot of attention is their

community structure [46, 81]. Informally speaking, a graph is said to have a strong

community structure if it can be partitioned into groups of nodes that are densely

connected with very few edges between groups. This structural feature can be mea-

sured in many different ways, the particular measure we consider, defined by Newman

and Girvan [81], is called modularity.

Defined loosely, the modularity of a given vertex-partition of a graph (i.e., the
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sparse1 moderate1 dense1

job class .08 .05 .03
department .21 .15 .12

spatial .366 .312 .272
maxQ .50 .38 .33

Figure 2.13: Modularity values for partitions of sparse1, moderate1, and dense1
graphs obtained via different methods. The modularity of the partition induced
by “job class” falls well below the 0.3 threshold for a strong community structure,
mentioned by Newman [80]. The last row shows modularity values for partitions
obtained by using a greedy clustering algorithm, called maxQ, due to Clauset et al.
[29]

graph’s community structure) is the fraction of intra-community edges compared to

the fraction of intra-community edges that the same node partition would have with

a uniform random assignment of edges (see [81] for a precise definition). Modularity

values upwards of 0.3 are said to indicate strong community structure [80]. Healthcare

workers can be naturally partitioned by job class or by department. As shown in Fig-

ure 2.13, community structure induced in this way does not appear to be particularly

strong. This is not surprising because healthcare workers in the same job class (e.g.,

nurses) are widely dispersed across multiple departments and departments are often

composed of spatially dispersed units. One can do somewhat better by using spatial

attributes. Specifically, for each healthcare worker u, define a home location H(u)

as the location of the computer in the hospital graph that u logs into most often.

This maps each healthcare worker onto a vertex in the hospital graph and moreover

establishes a metric space on the set of healthcare workers with the distance between

healthcare workers u and v being the hop distance in the hospital graph between u
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and v’s respective home locations. We then partition this metric space in a rather

simple way, by connecting any pair of healthcare workers that are distance at most

s from each other, for some integer parameter s ≥ 0. The connected components of

this graph induce a partition of the healthcare workers and by considering all possible

values of s we find one value (s = 6) that maximizes the modularity. Figure 2.13

shows that even this simple partitioning algorithm based on spatial attributes returns

a community structure that is better than the attempts mentioned earlier.

Finally, we have implemented the greedy clustering algorithm, called maxQ,

described by Clauset et al. [29] to determine if there are other vertex-partitions

with even better modularity values. As shown in Figure 2.13, this algorithm yields

a community structure whose modularity value is above the 0.3 threshold, noted as

significant by Newman [80], with the modularity value in the sparse1 graph being

particularly high. This indicates that the HCW contact networks have a strong

underlying community structure, with concomitant implications for infection control.

For example, since communities are densely connected it makes sense not to try and

break up communities, but rather to focus on breaking the links between communities.

2.3.3 Small World Property

The possibility that social networks may have unexpectedly small average

path length or diameter was first highlighted by Milgram’s well known “six degrees

of separation” experiments [72]. Watts and Strogatz [109] show several real-world

networks that have small average path length relative to Erdös-Renyi graphs of the



www.manaraa.com

32

same size and edge density and refer to this as the small-world property. Figure 2.11

shows that our HCW contact networks have one giant component along with lots of

tiny connected components. For example, even though the sparse1 HCW contact

network in Figure 2.11 has 873 components, more than 84% of its vertices and more

than 99% of its edges lie in its giant component. This is in contrast with the single

connected component that the corresponding random graphs have. Both average path

length and diameter of the giant components are very small relative to graph size (see

the last two rows in Figure 2.11), clearly pointing to the “small world” nature of the

HCW contact networks. For instance, the 5,838 individuals in the giant component

of the sparse1 graph are, on average, less than 4 hops from each other.

2.3.4 Diversity within Groups of Healthcare Workers

We partition healthcare workers into groups, each group defined by a unique

(department, job title) pair. Table 2.1 shows the top 10 largest such groups and

Table 2.2 points to a heavy-tailed distribution of the group sizes. Analysis of the

degree distribution of the largest 10 groups (see Figure 2.14(a)) clearly indicates that

degree distributions are heavy-tailed even within each group. Another key measure

that we associate with each healthcare worker is their mobility. The distance traveled

by person v in time window T is defined as follows. Suppose that person v has the

following sequence of login sessions (I1, I2, . . . , It) in time window T . Recall that each

login session Ij, 1 ≤ j ≤ t, has a specific location p(Ij), which is a vertex in the hospi-

tal graph. Let D(x, y) denote the hop-distance in the hospital graph between vertices
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Table 2.1: The largest ten groups of HCWs partitioned by distinct (department, job
title) pairs.

department job title group size
NURSING STAFF NURSE II 795
N/A N/A 664
NURSING STAFF NURSE I 617
NURSING NRS ASST 378
NURSING NRS UNIT CLK 124
RESPIRATORY CARE RESP THERAPIST 94
PATHOLOGY CL LAB SCI II 88
INTERNAL MEDICINE HSE STAFF FELL 74
NURSING PSY NUR ASST I 58
INTERNAL MEDICINE PROFESSOR 55

The second largest group is composed of HCWs that do not have an assigned
“department” or “job title” in the EMR login data.

Table 2.2: The number of groups for sizes from 1 to 10.

Group Size 1 2 3 4 5 6 7 8 9 10
# of Groups 431 149 85 52 61 27 26 13 18 18

x and y. The distance traveled by person v is defined as
�

t−1
j=1 D(p(Ij), p(Ij+1)).

Later, in Chapter 4, we use the distance traveled by a healthcare worker to determine

which healthcare workers to vaccinate. The cumulative distance distributions (Fig-

ure 2.14(b)) for the largest 10 groups indicate that the distance distributions are even

more heavy-tailed relative to degree distributions. One implication is that contact

network modeling within a hospital setting that takes healthcare workers within a

group (i.e., same ward or unit or job title) as being homogeneous is likely to miss

important structural features defined by unique individual properties.
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(a) (b)

Figure 2.14: Cumulative density plots for the (a) degree distribution and (b) distance
distribution for each of the largest 10 groups partitioned by (department, job title)
pairs. The plots show, for a particular x-value, the fraction of healthcare workers
whose degree (respectively, distance traveled) is at most the x-value. Thickness of
the line indicates the size of the group.

2.3.5 Discussion

Based on this statistical description of the contact graphs, it is clear that the

login contact graphs have all of the properties of “real world” networks highlighted

by Watts and Strogatz [109], i.e., despite being sparse, the login contact graphs have

large clustering coefficient and have a giant connected component with small average

path length. As we will see in the following chapter, this has ominous implication

for hospital-acquired infections: if these contact networks are a reasonable proxy for

actual contacts between health-care workers, then diseases (at least those that respect

the simplified model of infectious disease that Watts and Strogatz use) can spread

quite rapidly in hospitals. On the positive side, other properties of these networks,

such as heavy tailed degree distribution and strong community structure also suggest
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that targeted infection control strategies might be successful.
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CHAPTER 3
RANDOM GRAPH MODELS OF CONTACT NETWORKS

Random graph models are a way of describing a family of graphs by focusing

on a particular set of “important” graph characteristics and abstracting away and

randomizing “unimportant” details. The determination of what details are “impor-

tant” depends on the application of the graph being studied. Among many, there

are two important reasons to want to design random graph models. The first is that

with the enormous growth in networks being studied – compare the karate club graph

of Zachary [111] in 1977 with 34 vertices and 78 edges to the web graph studied by

Broder et al. [19] in 2000 with over 200 million vertices and over 1.5 billion edges

– it is impossible to study networks visually and we require some framework for un-

derstanding the essential features of the graph topology. The second is that using

random graph models allows for the development of analytical tools and algorithms

that can be applied to families of networks, not just specific datasets. The graph

models we discuss in this chapter are all “generative” models; they can be viewed as

algorithms which generated a representative graph for that model.

One of the simplest and most well-studied graph models is the Erdös-Rényi

(ER) random graph model, denoted by Gn,p that considers graphs with n vertices

where each pair of vertices is connected independently by an edge with probability

p [35]. An interesting feature of ER random graphs is that a number of NP-hard

optimization problems have been shown to have elegant solutions on ER random

graphs. Even though Erdös and Rényi introduced their graph model because of its
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interesting mathematical properties, ER random graphs have often been taken to be

“typical” instances of real-world graphs.

In 1998, Watts and Strogatz showed that real (world) networks exhibit the

“small-world” property of having a characteristically short mean path length and are

also highly clustered [109]. These properties make these real-world networks much

different from ER random graphs. Along with their empirical analysis of a number

of real networks, Watt and Strogatz provided one of the first models for generat-

ing “small world” graphs. Graphs based on the Watts-Strogatz model exhibit high

clustering and short average path length while having a Poisson degree distribution

similar to graphs described by the ER random graph model. As shown in the previous

chapter, this Poisson degree distribution excludes this graph model as a candidate

for our HCW contact networks, which have a heavy-tailed distribution. Fortunately,

the work of Watts and Strogatz has sparked an explosion of graph models in the last

century.

Barabási and Albert [12] give a model for “scale-free” networks (i.e., graphs

that tend to follow a power-law degree distribution [10]) that are generated by a

process commonly known as “preferential attachment”. Power-law describes a degree

distribution where the probability of a vertex having degree k is p(k) = k−α for some

α > 0. In real-world scale-free networks, α tends to fall between 2 and 3 [10]. The

Barabási-Albert model describes graphs which are grown by the following process;

starting with b vertices, vertices are progressively added to the graph and attached to

b vertices already existing in the graph, with probability proportional to the existing
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degree of each vertex (i.e., new vertices are more likely to attach to vertices with high

degree).

More recently Chung and Lu introduce a model for generating random graphs

with an expected degree distribution [27]. Given a degree distribution, the Chung-Lu

(CL) model generates, with high probability, graphs with that degree distribution.

In their work, Chung and Lu show that for graphs with a given degree distribution a

giant component exists if the expected average degree is at least 1 and no component

exists if the second-order average degree is at most 1.

The Configuration graph model, first introduced by Bender and Canfield [14]

and made famous by Molloy and Reed [75], generates a graph uniformly at random

from the collection of all graphs with the given degree sequence. The main contribu-

tion of Molloy and Reed was to show that for the degree sequence given by the vector

{d1, . . . , dn}, there is a giant component with high probability iff
�

i
i(i−1) di�

i di
> 0.

This summation is commonly referred to as the “phase transition” where the giant

component is formed. The giant component is a subgraph containing a majority of

the graph’s edges where every pair of vertices is connected by a path.

Newman et al. [89] derive an alternate proof of the conclusions of Molloy

and Reed which they extend to calculate the average component size, giant compo-

nent size, and average path length. This work has been extended further to include

calculations of the expected outbreak size of diseases for graphs generated by the

Configuration model [84, 68].

The Configuration model has been extended to generate graphs with a specified
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“assortative mixing” of vertices in the network [82, 88, 85]. The assortativity of

a network, loosely defined, measures the degree to which endpoints of edges have

similar properties. A specific instance of assortative mixing is degree assortativity

which depends on the degrees of vertices. Roughly speaking, degree assortativity

is the likelihood that high-degree vertices are, or are not, connected to other high

degree vertices. When we refer to assortativity in this work we are referring to degree

assortativity.

Most recently there has been interest in random graph models that incorporate

a specified level of clustering [8, 87, 90]. Here we define clustering loosely as a local

property of how well the neighbors of a vertex are connected (i.e., the degree to which

neighbors are also neighbors).

There is also a more sophisticated model considered by Leskovec et al. [64]

that uses Kronecker products to iteratively grow graphs from smaller subgraphs. Since

their primary focus is on the evolution of graphs, this model focuses on graphs that

result from “doubling” a smaller graph in a prescribed way to generate graphs that,

besides having a heavy-tailed degree distribution and small diameter, exhibit densi-

fication and a shrinking diameter over time. These graphs in practice have a high

computational cost and do not preserve local structural properties, like degree distri-

bution [99].
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3.1 Chapter Overview

In this chapter we look at a number of these candidate random graph models

and investigate their usefulness and applicability in the study of disease diffusion.

We narrow our focus to popular graph models that are (i) easy to generate and (ii)

are mathematically tractable. Our motivation for generating and comparing graph

models is to find a one to act as a proxy for the instances of HCW contact networks

we generate from EMR login records. Having a such a model gives us insight into (i)

the structural properties of the HCW contact networks relevant to the diffusion of

disease, (ii) a model for developing better approximations for optimization problems

on these networks, and (iii) the ability to generate new contact networks without

reliance on copious amount of data.

First, in Section 3.2, we describe a number of popular graph metrics for com-

paring graphs. In Section 3.3 we introduce a number of graph models as candidate

models for our HCW contact networks. We focus on graph models that have been

successfully used by researcher for modeling social networks that arise in other con-

texts. In Section 3.4 we use output from a simple agent-based simulation, which

mimics the spread of influenza, as a metric for comparing the progression of disease

diffusion across networks generated by these random graph models. In Section 3.5

we consider the next natural evolution of these models, random graphs that generate

graphs with a specified level of clustering, and show the difficulties in generating such

graphs. And finally in Section 3.6 we describe a new graph model for generating

graphs with specified clustering and consider it as a candidate model for our HCW
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contact networks.

3.2 Graph Metrics

There are a number of measurements that we use to compare random graph

models with HCW contact networks.

Mean Degree (�k�): The mean degree over all vertices in the graph. We consider

the standard deviation of the mean (σ) as well as the maximum degree kmax.

Degree Distribution: The degree distribution is the probability distribution over

degrees of all vertices. Since many social networks, like our HCW contact

networks, exhibit a heavy-tailed distribution [5, 39, 47, 60, 61] of vertex degrees,

the average degree is not indicative of the majority of vertices. Thus we also

compare the degree distributions of these graphs.

Clustering Coefficient (cc): The Clustering Coefficient measures to what extent

the neighbors of a vertex are also neighbors. This is another measure that Watts

and Strogatz identified to differentiate real-world networks from ER random

graphs. The clustering coefficient of a vertex v is the ratio of the number

of edges between neighbors of v over the total possible edges that can exist

between neighbors of v. The maximum possible edges between neighbors of v is

d(v)(d(v)−1)
2 . If we let tri(v) denote the number of actual edges that exist between

neighbors of v, then the clustering coefficient for vertex v is

cc(v) =
2 · tri(v)

d(v)(d(v)− 1)
.

The clustering coefficient of graph G = (V,E) is defined as the average cc(v)
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for all v ∈ V .

Transitivity (t): Transitivity is the ratio of closed triads with the total number of

possible triangles. Similar to the clustering coefficient, let tri(v) denote the

number of edges that exist between neighbors of vertex v ∈ V . Let triad(G)

denote the pairs of edges that share a vertex. The transitivity is then

�
v
tri(v)

triad(G)
.

The transitivity is similar to the clustering coefficient, but in cases where tri-

angles are distributed throughout the graph as opposed to localized to a few

vertices, the transitivity can differ from clustering coefficient by order of mag-

nitude [8, 102].

Assortativity (r): Assortativity [85, 82, 22] measures the extent to which vertices

with similar properties or types share an edge. For a particular type or prop-

erty, we say that a graph is assortative if vertices tend towards being connect

with other vertices of the same type. In our work we focus on degree assortativ-

ity which measures the correlation between the degrees of endpoints of edges.

Higher assortativity means that higher degree vertices tend to be connected

to other higher degree vertices and, similarly, lower degree vertices tend to be

connected to other lower degree vertices. The work on assortativity focuses

primarily on the excess degree of a vertex which is one less than the degree of

the vertex. In the standard definition given by Newman [82, 85] the degree as-

sortativity measures the correlation between excess degrees of the vertices. For

ease of exposition we refer to the degrees of the vertices directly, i.e., if a vertex
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has excess degree k we say the vertex has degree k+1. As defined by Newman

[85], let ejk denote the fraction of edges that connect vertices of degree j+1 and

k + 1. To remain consistent with the notation introduced by Newman [85], we

suppose that each undirected edge has a starting vertex A and ending vertex

B. Thus, each edge starts with a vertex A of type j and ends at a vertex B of

type k, and only occurs in one entry of the matrix e. The matrix e satisfies the

following equalities,

�

jk

ejk = 1
�

k

ejk = aj
�

j

ejk = bk.

Here aj is the fraction of edges that start at a vertex with degree j + 1 and bk

is the fraction of edges that end at a vertex with degree k + 1. The measure

of assortativity proposed by Newman is the Pearson correlation coefficient over

ejk,

r =

�
jk
jk(ejk − ajbk)

σaσb

where σa and σb are the standard deviations over the distribution of aj and bk.

Values for r range from −1, perfect disassortativity, to 1, perfect assortativity.

When there is no assortative mixing, ejk = ajbk and r = 0. ER random graphs

are an example of a graph having r = 0 (i.e., no assortative mixing).

Number of Connected Components (c): The number of connected components

in the graph.

Singletons: Number of components made up of only one vertex (i.e., isolated ver-

tices).
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Size of the Largest Component (ngiant): By measuring the size of the largest

connected component we check for the existence of a giant component which

contains a majority of the vertices. The existence of the giant connected com-

ponent also plays a key role in the spread of disease. If we assume that disease

cannot spread outside of the connected component where it starts, then the size

of the giant component is an upper bound on the number of people infected

given an outbreak. Further, a large giant component with short average path

length and small diameter imply that disease can spread quite rapidly to a large

part of the population represented by the network.

Density of the Largest Component (mgiant): The number of edges in the largest

component describes how densely connected the giant component is if it exists.

Mean Path Length (���): The mean shortest path length between all pairs of ver-

tices measured in the largest component by hop distance. Short average path

length in real world networks was first highlighted during Milgrams [72] “small-

world” experiments and is the property that characterizes small-world networks

as defined by Watts and Strogatz [109].

Diameter: The Diameter measures the worst-case distance between any pair of ver-

tices. More precisely, this is defined the maximum shortest-path between any

pair of vertices in the largest component. Similar to the average path length

measure, the impact of a small diameter is dependent on the existence of a giant

component.
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3.3 Generating Random Graphs

In this work we focus on the Erdös-Rényi, Barabási-Albert, Chung-Lu, Con-

figuration, and Configuration with Assortativity models. The ER model is presented

as a reference differentiating the more recent models from “random” graphs of yore.

The other models are presented as a representative set of recent models for describing

social networks.

While the HCW contact networks we generate have edge weights, to our knowl-

edge there are no random graph models that incorporate weighted edges. Of course,

it is easy to assign edge weights to edges from some distribution, but such an ap-

proach ignores correlations that might exist between edge weights and other graph

features such as degree distribution, clustering coefficient, etc. It is unclear how these

edge weights may affect our ability to understand the structural differences of these

models. We try to first understand how well these unweighted models match our

HCW contact networks purely on structure, before conflating them with the added

complexity of edge weights. Thus, for the remainder of this chapter we ignore edge

weights.

Every graph model we study has an input set of parameters which we derive

from our HCW contact networks. In all cases we assume we are generating graphs

from our HCW contact network G = (V,E) with vertex set V and edgeset E such

that |V | = n and |E| = m.

Erdös-Rényi (ER): The Erdös-Rényi (ER) random graphs are generated based on

parameters n and p. Starting with a graph of n vertices and no edges, each pair
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of vertices is connected by an edge with probability p. To ensure the expected

density of the ER random graph is the same as the density of our HCW contact

networks we set p = 2·m
n·(n−1) , the mean degree of our contact networks.

Barabási-Albert (BA): The Barabási-Albert model takes parameters n and b.

Starting with b vertices, the graph is “grown” by iteratively adding n − b new

vertices. When a new vertex is added to the graph, it is connected to b vertices

already in the graph. The probability of connecting to vertex u already in the

graph with probability proportional to

pu =
d(u)�
v
d(v)

.

where d(u) denotes the current degree of vertex u. To ensure the expected

density of BA random graphs have the same average degree as our HCW contact

networks we choose b = m

n
.

Chung-Lu (CL): The Chung-Lu model for generating graphs takes as input the

degree sequence over n vertices {d1, . . . , dn} where dk denotes the degree of

vertex k. To generate graphs based on this model we start with a graph with

n vertices and no edges. Edges are placed independently at random between

vertices u and v with probability, dudv�n
1 di

. This generates a graph expected degree

sequence {d1, . . . , dn}. More specifically, after placing edges, vertex i has degree

di with high probability.

Configuration (CONF): The configuration model is given as input an explicit de-

gree sequence over n vertices {d1, . . . , dn} and generates a graph uniformly at
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random from all graphs with given degree sequence. Generation starts with n

vertices with a vertex v having dv “open” stubs, representing candidate end-

points for edges. A pair of stubs is picked uniformly at random and an edge

is placed between those stubs, effectively closing the two stubs, until there are

no more open stubs. Since each vertex v has stubs equal to its degree dv, it is

guaranteed that each vertex v will have no more than degree v. From a theo-

retical perspective, as n tends towards infinity, we do not have to worry about

self-loops or multiple edges [83]. In practice, graphs generated by this method

may contain self-loops and multi-edges. Since our HCW contact networks con-

tain neither, we simply ignore any graphs generated with multiple edges or self

loops and simply regenerate the graph.

Configuration with Assortativity (CA): The CA model takes as input the de-

gree sequence of n vertices {d1, d2, . . . , dn} as well as an assortativity matrix

e and generates a graph uniformly at random from all graphs with the given

degree sequence and assortativity matrix. Denote the number of edges in the

graph we are generating as m =
�

i di

2 . Each entry ejk gives the fraction of edges

that connect vertices of degree j+1 to vertices of degree k+1. Recall discussion

in Section 3.2 for details on handling of matrix e in undirected graphs. Further,

we let aj =
�

k
ejk and bk =

�
j
ejk be the fraction of edges that start with ver-

tex of degree j+1 and end with vertex of degree k+1 respectively. Like in the

Configuration model, we have n vertices with vertex v having dv “open” stubs

representing candidate edges and let Sj be set of open stubs adjacent to ver-
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tices of degree j. For our purposes we are generating graphs with given degree

sequence and assortativity matrix calculated based on HCW contact networks

and thus assume that there are (i) no self loops and (ii) m · (ai + bi) = |Si+1|

(i.e., there are exactly enough stubs to accommodate the edges that start or

end at a vertex of degree i + 1). For more general discussion about generating

graphs with given degree sequence and assortativity refer to [83, 85]. Let U be

the multiset of tuples containing m · ejk instances of the tuple �j, k� for every

j, k, corresponding to entries of the ejk matrix. The graph generation process

is as follows. First a tuple �j, k� is picked uniformly at random and removed

from U . Stubs u and v are then picked uniformly at random and removed from

the Sj and Sk respectively. Each time this happens an edge is placed between a

vertex of degree i and degree j and the stubs are effectively closed. This process

can fall into situations where a multiedge or self loop is formed. To avoid this

in practice the stubs are redrawn up to a designated number of times at which

point we accept the choice and move on, marking the edge as added but in

need of fixing. When the graph has been generated, we resolve any self-loops or

multi-edges by performing an edge swap. Specifically, suppose that edge (u, v)

with endpoint types j and k has a multiedge or self-loop. To resolve this we find

another edge of type j and k, say (u�, v�), such that u �= u�, u �= v�, v �= v�v �= u

and there are no edges (u, v�) or (u�, v). Then we perform a swap by removing

edges (u, v) and (u�, v�) and adding edges (u, v�) and (u�, v). Since our input

parameters are based on HCW contact networks, we know that these swaps are
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Table 3.1: Graph statistics for the sparse50 graph and graphs generated using the
Erdös-Rényi (ER), Barabási-Albert (BA), Chung-Lu (CL), Configuration (CONF),
and Configuration with Assortativity (CA) models.

HCW ER BA CL CONF CA

n 7144 7144.0 7144.0 7144.0 7144.0 7144.0

m 70505 70581.0 64215.0 70547.167 70505.0 70505.0
(±279.775) (±219.872)

�k� 19.738 19.76 17.977 19.75 19.738 19.738
(±0.078) (±0.062)

σ 26.199 4.447 20.781 26.579 26.199 26.199
(±0.036) (±0.306) (±0.117)

kmax 232 38.65 450.75 236.222 232.0 232.0
(±2.372) (±49.015) (±13.99)

r 0.165 −0.001 −0.02 −0.002 −0.005 0.165
(±0.003) (±0.003) (±0.004) (±0.003) (±5.551 − 17)

cc 0.311 0.003 0.013 0.016 0.016 0.012
(±0.001)

t 0.25 0.003 0.011 0.021 0.02 0.028

c 1207 1.0 1.0 1406.889 1129.9 1177.55
(±12.684) (±0.831) (±0.589)

singletons 1128 0.0 0.0 1405.444 1128.0 1128.0
(±12.82)

ngiant 5758 7144.0 7144.0 5737.667 6014.2 5918.2
(±12.574) (±1.661) (±1.939)

mgiant 70173 70581.0 64215.0 70546.722 70504.1 70455.75
(±279.775) (±219.722) (±0.831) (±1.374)

��� 3.718 3.282 3.058 3.064 3.123 3.263
(±0.005) (±0.005) (±0.005) (±0.001)

diameter 13 5.0 5.0 6.824 7.1 9.95
(±0.381) (±0.436) (±0.865)

For random graph models values are averaged over 20 generated graphs and ± values

indicate significant (> .0001) standard deviation.

always possible.

3.3.1 Comparison of Graph Properties

Tables 3.1 and 3.2 compare the graph properties for our HCW contact networks

against the Erdös-Rényi, Barabási-Albert, Chung-Lu, Configuration, and Configura-

tion with Assortativity models.

The first thing we note is that both configuration and the CA models gen-

erate graphs with exactly the same mean degree since these models generate the
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Table 3.2: Graph statistics for the moderate50 graph and graphs generated using the
Erdös-Rényi (ER), Barabási-Albert (BA), Chung-Lu (CL), Configuration (CONF),
and Configuration with Assortativity (CA) models.

HCW ER BA CL CONF CA

n 7144 7144.0 7144.0 7144.0 7144.0 7144.0

m 191270 191331.4 185068.0 191189.684 191270.0 191270.0
(±393.333) (±445.964)

�k� 53.547 53.564 51.811 53.525 53.547 53.547
(±0.11) (±0.125)

σ 64.704 7.301 50.943 65.046 64.704 64.704
(±0.054) (±0.301) (±0.136)

kmax 660 82.2 729.85 664.474 660.0 660.0
(±1.806) (±37.115) (±21.975)

r 0.139 −0.0001 −0.005 −0.002 −0.016 0.139
(±0.002) (±0.002) (±0.002) (±0.001)

cc 0.413 0.007 0.028 0.041 0.041 0.03
(±0.001) (±0.001)

t 0.234 0.007 0.027 0.045 0.043 0.062

c 323 1.0 1.0 438.0 300.2 315.167
(±6.258) (±0.4) (±0.373)

singletons 299 0.0 0.0 436.947 299.0 299.0
(±6.287)

ngiant 6770 7144.0 7144.0 6706.947 6844.55 6814.5
(±6.236) (±0.921) (±1.118)

mgiant 191116 191331.4 185068.0 191189.632 191269.75 191254.667
(±393.333) (±445.969) (±0.536) (±0.745)

��� 3.134 2.657 2.57 2.65 2.666 2.828
(±0.001) (±0.001) (±0.002) (±0.001) (±0.001)

diameter 11 3.95 4.0 5.95 5.85 8.333
(±0.218) (±0.218) (±0.357) (±0.471)

For random graph models values are averaged over 20 generated graphs and ± values
indicate significant (> .0001) standard deviation.
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exact degree sequence as the input HCW contact network. The Chung Lu allows for

more freedom by generating graphs with expected degree sequence, but still generates

graphs with approximately the same mean degree. The Barabási-Albert model has a

lower mean degree and lower standard deviation over this mean, but has a maximum

degree almost double that of the HCW contact network. To show more detail about

the degrees of graphs generated by these graphs, Figures 3.1 and 3.2 compare the

degree distributions of the HCW contact network and ER, BA, and CL models. The

configuration-based models are not plotted as they match the degree distribution of

the HCW contact network exactly. The BA model has a minimum degree of b = m

n
,

which is an effect of the model itself, since each new vertex connects to exactly b

vertices in the graph.

One area where all generated graphs fail to accurately model the HCW con-

tact networks is the clustering coefficient. It is especially interesting to note that

even though the CA model preserves the assortativity of the graph, it has very little

clustering coefficient. Similarly, all graphs generated by the model have an order of

magnitude smaller transitivity.

An interesting characteristic of the HCW contact networks is their relatively

high assortativity (r). Except for the CA mode which explicitly maintains assorta-

tivity, the remaining models fail to model this attribute and in fact generate graphs

that are neither assortative nor disassortative. The minor disassortativity (negative

assortativity) in the Barabási-Albert model is likely the effect of new vertices (with

relatively low degree) having a higher probability of sharing an edge with a high de-
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Figure 3.1: Degree distributions for the sparse50 HCW contact network and corre-
sponding graphs generated by the Erdös-Rényi (ER), Chung-Lu (CL), and Barabási-
Albert (BA) models. x-axis denotes the degree. y-axis denotes the fraction of nodes.
Plot is truncated; maximum values can be found in Table 3.1.



www.manaraa.com

53

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

Degree

PD
F

HCW
BA
CL
ER

Figure 3.2: Degree distributions for the moderate50 HCW contact network and corre-
sponding graphs generated by the Erdös-Rényi (ER), Chung-Lu (CL), and Barabási-
Albert (BA) models. x-axis denotes the degree. y-axis denotes the fraction of nodes.
Plot is truncated; maximum values can be found in Table 3.2.
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gree vertex. And despite the configuration model matching the HCW contact network

degree sequence exactly, generated graphs have no assortativity.

There is also a noticeable difference between the giant component sizes of the

various graph models. The ER and BA models generate a single giant component

containing all vertices whereas the CL model generates a component of roughly the

same size as the HCW contact networks. However, the CONF and CA models gener-

ate graphs with a giant component slightly larger than the HCW contact networks we

generate (roughly 5% larger). But what is more interesting about this is that, despite

having larger components, the random graph models have shorter mean path length

���. One hypothesis for the behavior is that the HCW contact networks have “tails”

of vertices extending from the giant component that do not happen in the random

graph models due to mixing of edge endpoints. The differences in diameters, with

the HCW contact networks having diameter almost twice that of the CONF model,

is further evidence of the existence of these “tails”.

3.4 Comparing the Spread of Disease

While there are obvious structural differences between the HCW contact net-

work and graphs generated by the random graph models, one of our primary motiva-

tions is to be able to use these random graphs models as the basis for improvements to

optimization problems relating to disease diffusion. However, relatively little research

has been done on how well random graph models model diffusion processes on the

graph instances which they represent. Specifically, we would like to know how disease
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diffusion behaves on graphs generated by these random graph models in comparison

with our HCW contact networks.

To simulate the spread of disease we use an agent-based simulation, based on

a simple SIR-like model defined by parameter p, that attempts to model the spread

of influenza. In our model, each individual is assumed to have the same susceptibility

to disease, have the same transmissibility, remain sick the same amount of time, and

stay active in the contact network for the entirety of the simulation. Transmissibility

is assumed to last for exactly m days. On the ith day of being infected, 1 ≤ i ≤ m,

individual j spreads the disease to neighbor k with probability pi
j,k
. We set m = 9 and

set pi
j,k

values according to vector of shedding levels S = (0.016645, 0.05, 0.035235,

0.02137, 0.011155, 0.007115, 0.005015, 0.003195, 0.00336) derived from plots in Carrat

et al. [23]. Specifically, the ith entry in this vector, Si denotes the shedding level on

day i. Based on the parameter p, which we call the “peak transmission probability”,

the vector S is scaled so that S2 = p. We compute the pi
j,k

values using the formula

pi
j,k

= (1−(1−Si)
w(j,k)

28 ). Recall that w(j, k) is the weight of edge {j, k}, corresponding

to the total number of contacts between j and k during time period T and therefore

w(j, k)/28 represents the average number of daily contacts between HCW j and k

during a 4-week (28 day) period. Based on this model we rely on the following Lemma

to calculate a number of properties on our graphs.

Lemma 3.1. The transmission probability (transmissibility) for disease spread across

edge (j, k) with weight w(j, k) is ρ = 1−
�

i
(1− Si)

w(j,k)
28 .

Since the random graph models generate unweighted graphs, we use a uni-
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form edge weight w(j, k) = 28 for all edges (j, k), representing a single contact per

day. In the remainder of this chapter we refer to this agent-based simulation by the

transmissibility ρ as calculated by Lemma 3.1.

Each simulation we run generates the number of new infections each day as a

result of a single infected individual chosen uniformly at random from the population.

Simulations start with a single infected individual and continue until there is no longer

anyone infected. We run 10, 000 simulations for each graph and track the number of

infected each day, recording both the median and average values for each day over

all runs. Our plots give the number of infected individuals on a given day. In these

experiments we don’t record the specific daily values for each individual simulation.

We refer to the mean or median “disease curve” as the sequence I1, I2, . . . , Ik where

k is the number of days until disease dies out and Ii is the mean or median number

of individuals infected on day i, respectively.

Table 3.3: Numerical comparison of the curves in Figure 3.3 measured by the sum of
the squared difference in the number of individuals infected each day.

HCW CA CL CONF ER BA
HCW 0.0 405.5 847.705 883.252 4801.827 2486.387

Smaller values indicate more similarity.

Figures 3.3 and 3.4 show mean and median disease diffusion curves, respec-

tively, for the moderate50 HCW contact network and the random graph models based

on simulations for ρ = .0302. The differences in the two figures shows an important
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Figure 3.3: Comparison of graphs generated by the Erdös-Rényi (ER), Barabási-
Albert (BA), Chung-Lu (CL), Configuration (CONF), and Configuration with Assor-
tativity (CA) models with the moderate50 (HCW) graph they model. Graph shows
the mean number of people infected on a given day of the SIR simulation with trans-
missibility (ρ = .0302). x-axis represents the timestep for the simulation (days).
y-axis gives the number of people in the “infected” state during that timestep.
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Figure 3.4: Comparison of graphs generated by the Erdös-Rényi (ER), Barabási-
Albert (BA), Chung-Lu (CL), Configuration (CONF), and Configuration with Assor-
tativity (CA) models with the moderate50 (HCW) graph they model. Graph shows
the median number of people infected on a given day of the SIR simulation with
transmissibility (ρ = .0302). x-axis represents the timestep for the simulation (days).
y-axis gives the number of people in the “infected” state during that timestep.
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Table 3.4: Statistics for the plots in Figures 3.3 and 3.4 showing mean and median
number of individuals infected, the mean positive increase in the curve and day with
the most number of infected individuals.

HCW CA CL CONF ER BA
Mean Inf. 1697.46 1795.006 1994.875 2017.214 3039.618 2503.289
Median Inf. 3 3460 3719 3739 4587 4166
Mean +∆ 5.997 8.145 9.311 8.002 1.595 5.663
Peak Day 22 22 23 23 51 28

difference between disease diffusion on ER random graphs and those graphs gener-

ated from the CONF model, CA model, and HCW contact networks. When using the

mean number of new infected per day, the peak on CONF, CA, and HCW contact

network is higher than that of the ER graphs. However, when using the median num-

ber of new infected each day the peak of the ER graph exceeds that of the CONF, CA

and HCW contact network. This suggests that more than half the time, the number

of new infected on a day for the CA and CONF graphs is quite low and 0 in the

HCW contact networks. But the exceedingly high peak when using the mean number

of new infected suggests that there are a few cases where there is a huge number of

infected individuals, causing the high peak in the average case.

To measure the differences in the disease curves we take the squared difference

at each point (see Table 3.3). For pairs of curves this measurement gives a metric for

how closely the curves follow each other. As we can see, both visually in Figure 3.3

and in Table 3.3, the disease curve of the CA model most closely matches the curve

of the HCW contact network followed by the CONF and CL models.

Most research on random graph models focuses on simply comparing the mean
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number of infected individuals as a result of a single infected individual chosen uni-

formly at random. Aggregate values for the simulations in Figure 3.3 are given in

Table 3.4. Simply focusing on mean or median values ignores temporal aspects of

disease diffusion that we see in our disease curves. Thus, we also include the mean

positive slope value (+∆), which takes the average positive increase in each curves,

and the day in which the disease curve peaks. This provides additional information

that is important to characterizing the spread of disease on these models. For exam-

ple, the ER graph model overestimates the mean and median number of infected, but

disease also spreads much more slowly on the ER graph.

Table 3.5: Statistics for the plots in Figure 3.5 showing mean and median number of
individuals infected, the mean positive increase in the curve and day with the most
number of infected individuals.

HCW CA CL CONF ER BA
Mean Inf. 317.291 328.448 334.222 332.196 2.875 56.854
Median Inf. 1 1 1 1 1 1
Mean +∆ 0.229 0.248 0.18 0.176 0.011 0.01
Peak Day 39 40 45 45 9 47

Table 3.6: Numerical comparison of the curves in Figure 3.5 measured by the sum of
the squared distances each day.

HCW CA CL CONF ER BA
HCW 0.0 33.115 129.863 143.088 415.394 371.799

Smaller values indicate more similarity
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Figure 3.5: Comparison of graphs generated by the Erdös-Rényi (ER), Barabási-
Albert (BA), Chung-Lu (CL), Configuration (CONF), and Configuration with Assor-
tativity (CA) models with the moderate50 (HCW) graph they model. Graph shows
the mean number of people infected on a given day of the SIR simulation with trans-
missibility ρ = .0122. x-axis represents the timestep for the simulation (days). y-axis
gives the number of people in the “infected” state during that timestep.
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The importance of measuring the rate of disease diffusion and peak time be-

comes more apparent when we lower transmissibility. Figure 3.5 shows the disease

curves for the moderate50 graph and corresponding random graph models for an SIR

simulation for ρ = .0122, which is much lower than the simulation in Figure 3.3.

Aggregate statistics for the disease curves are shown in Table 3.5. While the mean

number of infected for the CA model is close to the HCW contact network, the CL

and CONF models are actually closer. However, if we consider the rate of disease

spread (+∆) and peak day from Table 3.5 we can see that indeed the CA model

does more accurately match the HCW for these metrics. We can also confirm this

in Table 3.6 where the disease curve for the CA model more closely resembles the

disease curve for the HCW contact networks.

Another interesting aspect of transmissibility ρ = .0122 is that it is below

the “epidemic threshold” for the ER random graphs. The epidemic threshold is

the transmissibility at which disease transitions from infecting very few individuals

to infecting lots of individuals. While not all graph models exhibit an epidemic

threshold, for a number of random graph models, including the ER, CONF, and CA

models, researchers have analytically determined the expected epidemic threshold

for graphs generated from these models [91]. For ER random graphs the epidemic

threshold is well-known 1
�k� where �k� is the average degree. Since the ER graphs

shown in the previous figures is based on the moderate50 graph with mean degree

53.564, the epidemic threshold is 1
53.564 = .01866, explaining the absence of significant

disease spread on the ER graph.
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Finally, at lower transmissibility the CONF and CL models underestimate dis-

ease spread of the HCW contact networks. The CONF and CL graphs also exhibit

a “lag” in hitting their peak after the HCW contact network and graphs generated

by the CA model. Recall in Figure 3.3 both CONF and CL models overestimate

disease spread on the HCW contact networks but peaks on roughly the same day.

This may be partially explained by epidemic threshold of the CONF graphs. As

given by Meyers [69] the epidemic threshold for the CONF model is �k�
�k2�−�k� where

�k2� is the mean squared degree. The configuration graphs we generate, based on

the moderate50 HCW contact network, have mean degree 53.564 and mean squared

degree 7053.889 and thus an epidemic threshold of 0.0076. In Figure 3.6 we com-

pare moderate50 graph and corresponding CONF graphs for transmissibility values

{.00763, 0.00794, 0.00824, 0.00854}. Corresponding mean number of infected values

are given in Table 3.7. It appears that as transmissibility approaches the epidemic

threshold for the CONF model, the configuration model underestimates the spread

of disease to a larger degree.

Table 3.7: Mean number of infected individuals for the disease curves in Figure 3.6.

Transmissibility HCW CONF
0.00854 452.60954 208.31246
0.00824 343.11787 149.03785
0.00794 274.22523 101.66481
0.00763 196.29836 77.80498

It turns out that graphs generated by the CA model also underestimate the dis-
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Figure 3.6: Comparison of the HCW contact network and CONF graphs for trans-
missibility values in {.00763, 0.00794, 0.00824, 0.00854}.



www.manaraa.com

65

ease spread of the HCW contact networks, just to lesser extent. Figure 3.7 shows dis-

ease curves for the moderate50 graph and corresponding graphs generated by the CA

model based simulations for transmissibility values {.00763, 0.00794, 0.00824, 0.00854}.

Corresponding mean number of infected values are given in Table 3.8.

Table 3.8: Mean number of infected individuals for the disease curves in Figure 3.7.

Transmissibility HCW CA
0.00854 452.6095 409.7092
0.00824 343.1179 324.0961
0.00794 274.2252 236.4079
0.00763 196.2984 167.4243

In general, random graph models tend to fix one property of the graphs they

are generating and randomize over the others. Obviously as we control for more

properties, such as degree sequence and assortativity in the CA model, there is less

“mixing” of edges. Here we use the term mixing loosely to mean the randomization

of connections within the network. We hypothesize that this mixing is what causes

the CONF model to largely overestimate disease spread at higher transmissibility and

underestimate disease spread at lower transmissibility. Where the CA model allows

for less mixing since the correlations between the vertex degrees at endpoints of edges

must be maintained.

Recall that assortativity measures the correlation between the degrees of end-

points of edges. High assortativity means that edges tend to connect vertices of

similar degree, i.e., high degree vertices are more likely to connect to other high de-
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Figure 3.7: Comparison of the HCW contact network and CONF graphs for trans-
missibility values in {.00763, 0.00794, 0.00824, 0.00854}.
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gree vertices. This supports the experiments performed by Newman where synthetic

graphs with positive assortativity, no assortativity, and negative assortativity were

compared for various edge densities [85]. From these experiments Newman concluded

that positively assortative graphs exhibit a giant component at lower edge density

than graphs with no assortativity or negative assortativity. Further, these graphs

appear to have a dense “core group” of vertices which, for low transmission proba-

bility, act as a reservoir for disease, allowing the disease to remain active despite low

transmissibility. At higher transmission probability, disease spread is more limited in

assortative graphs likely due to smaller size of the giant component. Put another way,

even with higher transmissibility, disease is less likely to spread outside this densely

connected “core” in assortative graphs.

In general, these disease diffusion simulations show compelling evidence that

assortativity is an important aspect of the HCW contact networks we generate. And

while the CA model is a remarkably more accurate model for the HCW contact

networks there are still some minor differences.

3.5 Clustering in Networks

To this point we have considered a number of random graph models that

model features such as mean degree, degree distribution, and assortativity. The next

natural feature to consider is clustering. A common metric for local clustering around

a vertex, which we have defined precisely in Section 3.2 is the clustering coefficient.

Here we let cc(v) denote the clustering coefficient of vertex v
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Analyzing and comparing the clustering coefficient of graphs is popular in

social network research primarily due to the Watts and Strogatz [109] discovery that

high clustering coefficient is one property that differentiates real-world networks from

those generated by the Erdös-Rényi random graph model. Clustering coefficient alone

doesn’t give any information about the distribution of clustering among vertices or

any correlation between clustering coefficient and degree. There are some interesting

aspects to how the clustering coefficient is distributed among the vertices in the

HCW contact networks. As we show in figure 3.8 the clustering coefficient for our

HCW contact networks exhibits a Poisson-like distribution. However, there is evident

correlation between clustering coefficient and degree in the HCW contact networks

as shown in Figure 3.9. Recall that the clustering coefficient of a vertex v is roughly

the number of pairs of neighbors of v that share an edge over the squared degree of

v. Thus, a higher degree vertex requires many more edges between pairs of neighbors

to achieve a high clustering coefficient. This may account for some of the decrease in

clustering coefficient as degree increases.

Recently, a number of models for generating random graphs with given clus-

tering coefficient have been proposed in the literature [8, 51, 87, 107, 106, 16, 90]. The

proposed models can be classified into three categories which we call, construction-

based [87, 90], growing-based [51, 107, 106, 16], and rewiring-based [8]. Construction-

based models are given an input set of parameters, typically a degree distribution

and clustering coefficient, start with a graph of n vertices and no edges, and then

strategically place edges so that after edges have been placed, specified degree distri-
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Figure 3.8: Clustering coefficient distribution for the sparse50, moderate50, and
dense50 HCW contact networks. Vertices with degree less than 2 are ignored.
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Figure 3.9: Vertex degree vs clustering coefficient correlation plot for the sparse50,
moderate50, and dense50 HCW contact networks. Vertex degrees are group in bins
of size 10. The dense curve is truncated and extends out to 1240.



www.manaraa.com

71

bution and clustering coefficient are met. Growing-based models build up a graph by

repeatedly adding a vertex or small subgraph with high clustering which is attached

to the rest of the graph based on input parameters to the model. For this work we

ignore growing-based models because they are computationally expensive and don’t

preserve degree-sequence. Rewiring-based algorithms start by generating a graph us-

ing a model doesn’t pay attention to clustering coefficient, and then increases the

clustering coefficient by strategically “rewiring” edges [8].

3.5.1 Construction-Based Models

Because of the mathematical machinery available for them, we first consid-

ered construction-based random graph models which incorporate clustering. New-

man [87] proposed a generalization of the configuration graph model, which we will

call the Configuration with Clustering (CC), for graphs with a given degree sequence

(d1, . . . , dn) and “triangle” sequence (t1, . . . , tn). Here ti is the number of triangles

that have vertex i as a corner and di is the number of edges that do not participate

in a triangle. Two example graphs with du = 1 and tu = 3 are given in Figure 3.10(a)

and 3.10(b).

One of the assumptions made by this model is that triangles in the graph do

not share edges. Newman notes, “It is possible for single edges by chance to form

triangles themselves, but it is straightforward to show that, so long as mean degree

remains constant as n increases, the density of such triangles vanishes in the limit of

large system size.” Thus, the total degree of any vertex is di + 2ti and the graph in
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(a)
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(b)

Figure 3.10: Two example graphs showing a joint degree-triangle distribution for a
node u, where u has a single non-triangle forming edge du = 1, and is the corner of
three triangles tu = 3. (a) Configuration requiring 6 edges to 4 neighboring vertices
and a clustering coefficient of .5. (b) Configuration requiring 10 edges to 7 neighboring
vertices.

Figure 3.10(a) cannot be modeled. In fact, we can easily show that many real-world

graphs cannot be modeled based on this assumption. Assume for the moment that

a graph G has t triangles and no two triangles share an edge, then the minimum

number of edges required to generate these triangles is 3t. Table 3.9 shows the

number of actual edges, the number of triangles, and the number of required edges

under the assumption that no two triangles share an edge, for the karate club network

from Zachary [111] and co-authorship network for network theory [86] along with the

sparse50 and moderate50 HCW contact networks. From the table we can see that

despite have a low number of edges, these graphs have a large number of triangles,

suggesting that triangles share a large number of edges in these networks.
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Table 3.9: Table comparing the number of triangles, actual edges, and minimum
required triangle edges if no two triangles share an edge for two real-world networks
and our HCW contact networks.

Clustering Triangles Actual Edges Req. Triangle Edges
Zachary Karate Club .571 45 78 135

Co-authorship Network .638 3, 764 2, 742 11, 292
sparse50 .311 313, 903 70, 505 941, 709

moderate50 .413 1, 948, 462 191, 270 5, 845, 386

One way to avoid this assumption is to just ignore it. In an attempt to fix

problems with the Newman approach, Parikh [90] proposed theDEG algorithm which

takes as input a degree sequence (d1, d2, . . . , dn) and a target clustering coefficient c,

and aims to output a graph with the given degree sequence and clustering coefficient

no less than c. The algorithm assumes that the clustering coefficient c is evenly

distributed among the n vertices of the graph. For a vertex i to achieve a clustering

coefficient of c it must have at least c
�
di

2

�
triangles which it participates in, i.e., a c

fraction of all pairs of neighbors must also be neighbors. Since each triangle is formed

by three vertices, then the total number of triangles that must exist in a graph with

the degree sequence given above is

T =
c
�

i

�
di

2

�

3
.

The DEG algorithm is then to place T triangles and then place edges appropriate

to satisfy the desired degree sequence. To assure that degree sequence isn’t violated

the algorithm maintains a residual degree rd[i] for each vertex i that is remaining

edges which can be attached to i to assure that i has degree no larger than di.

DEG is described in Algorithm 3.1. To place triangles the algorithm picks three

vertices u, v, w with probability proportional to their residual degree rd[u], rd[v], rd[w]
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Algorithm 3.1 DEG algorithm

1. input: Degree sequence d = {d1, d2, . . . , dn} and value c, 0 < c < 1
2. V ← {1, 2, . . . , n}
3. M ←

�
i di

2

4. E ← ∅
5. rd ← d

6. T ← c·
�

i (di2 )
3

7. while T ≥ 0
8. pick u with probability rd[u]�

x rd[x]

9. pick v with probability rd[v]�
x rd[x]

10. pick w with probability rd[w]�
x rd[x]

11. if rd[u], rd[v], rd[w] are sufficient for forming triangle u, v, w
12. if (u, v) �∈ E
13. rd[u] ← rd[u]− 1; rd[v] ← rd[v]− 1;M ← M − 1
14. end if
15. if (v, w) �∈ E
16. rd[v] ← rd[v]− 1; rd[w] ← rd[w]− 1;M ← M − 1
17. end if
18. if (u, w) �∈ E
19. rd[u] ← rd[u]− 1; rd[w] ← rd[w]− 1;M ← M − 1
20. end if
21. E ← E ∪ {(u, v), (v, w), (u, w)}
22. T ← T − 1
23. end if

24. end while

25. whileM ≥ 0
26. pick u with probability rd[u]�

x rd[x]

27. pick v with probability rd[v]�
x rd[x]

28. if (u, v) �∈ E
29. E ← E ∪ {(u, v)}
30. rd[u] ← rd[u]− 1
31. rd[v] ← rd[v]− 1
32. M ← M − 1
33. end if

34. end while
35. return (V,E)
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respectively. In Step 11 the algorithm checks that u, v, w have sufficient residual

degree so that adding a triangle doesn’t violate the degree sequence. Consider the

case when edge (v, w) ∈ E but (u, v) �∈ E and (u, w) �∈ E and rd[u] = 1. In this

case, forming a triangle between vertices u, v, w requires that 2 edges adjacent to u,

specifically (u, v) and (u, w), be added to E, but since the residual degree of u is only

1, this would violate the specified degree of u. Also, for this case, since (v, w) ∈ E,

the formation of triangle u, v, w does not need to add edge (v, w) and thus Steps

12 − 20 assure that the residual degrees rd[i] of each vertex i and the number of

unplaced edges M are maintained properly. Note that if a triangle already exists

between u, v, w then the placement of the triangle is still counted against the number

of triangles added.

We implemented this algorithm in an attempt to study the effect of clustering

on disease diffusion. In our experiments, the number of triangles generated were

orders of magnitude less than what was expected, as shown in Table 3.10. As a

result, graphs generated by this algorithm failed to achieve the desired clustering

coefficient. For the moderate50 graph, the DEG algorithm calculates that it will

need to place roughly 50% more triangles than are actually in the target graph, in

order to achieve the desired clustering coefficient. The same phenomenon happens

with the sparse50 graph but not to the same degree. More importantly, even with

these high expectations for placing triangles, the algorithm fails to generate enough

triangles.

Figure 3.11 compares the clustering coefficient distribution of the sparse50 to
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Table 3.10: Results from experimental runs of the DEG algorithm.

Input Output HCW Calculated Output
cc cc Triangles Triangles Triangles

sparse50 0.311239 0.15521 313, 903 391, 433 48, 478
moderate50 0.413189 0.135176 1, 948, 462 3, 443, 959 421, 103

Shows the input clustering coefficient, the clustering coefficient of the output graph, the
number of triangles in the corresponding HCW contact network, the number of triangles
calculated by the algorithm based on the input clustering coefficient, and the number of
triangles in the output graph

the corresponding graphs generated by the DEG algorithm. The plot shows that

while there are a number of vertices with high clustering coefficient, a majority have

a very low clustering coefficient, and there are relatively few vertices with clustering

coefficient between .2 and .6 compared to the HCW contact networks. A more in-

teresting view of this is given in Figure 3.12 where we consider the degree-clustering

coefficient correlation for the sparse50 graph and the corresponding graphs generated

by the DEG algorithm. From this we see that the clustering coefficient that does

exist in these graphs is the contribution of the a number of low degree vertices with

high clustering coefficient. Put another way, the DEG algorithm fails to raise the

clustering coefficient of higher degree vertices. Remember that to achieve the same

clustering coefficient for a high degree vertex i, compared to a low degree vertex,

requires a large number of edges between neighbors of i. One hypothesis is that in

picking two other vertices to form a triangle adjacent to i, the DEG algorithm is un-

likely to pick vertices that are already neighbors of i. Thus, each time a new triangle

is formed which i participates in, it is unlikely to be formed between vertices that are
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already neighbors of i and very quickly the residual degree of i is exhausted before

adequate clustering coefficient is achieved.
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Figure 3.11: Clustering coefficient distribution for sparse50 graph and corresponding
graphs generated by the DEG algorithm. Vertices with degree less than 2 are ignored.

Graphs generated by the DEG algorithm, based on the sparse50 graph do

achieve a 0.15521 clustering coefficient. However, figures 3.13 and 3.14 suggest that
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Figure 3.12: Vertex degree vs clustering coefficient correlation plot for sparse50 graph
and corresponding graphs generated by the DEG algorithm. Vertices are grouped into
bins based on degree by groups of 5.
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the higher 0.15521 clustering coefficient of the DEG graphs, compared to the 0.0157

clustering coefficient in the CONF graphs, results in negligible change to the disease

curves. When transmissibility is low, as in Figure 3.13, minor differences, relative to

the CONF graphs, may be due to this minor increase in clustering, allowing disease

to spread to a few more vertices in the average. At higher transmissibility, as in

Figure 3.14, this local clusters may act a “trap” for disease from which disease has a

hard time escaping, and thus we see a very minor decrease in the disease curve peak

for DEG graphs.

3.5.2 Edge Swapping

In practice, the construction-based approaches of the previous section are un-

able to generate graphs with clustering coefficient equivalent to our HCW, and thus we

considered an edge swapping approach. Bansal, Khandelwal, and Meyers [8] propose

a method for creating random graphs with a given degree sequence and clustering

coefficient by running a Markov chain simulation algorithm that performs a series

of edge swaps. The process and conditions for edge-swapping are given below and

illustrated in Figure 3.15. In the configuration in Figure 3.15 , edges (y1, z1) and

(y2, z2) can be remove and edges (y1, y2) and (z1, z2) added without perturbing the

degrees of vertices y1, y2, z1, z2.

The method of proposed by Bansal, Khandelwal, and Meyers, which we will

refer to as the BKM model, takes as input a degree sequence S = (d1, . . . , dn) and

desired clustering coefficient c, and outputs a graph that has degree sequence S and
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Figure 3.13: Comparison of sparse50 graph and corresponding graphs generated by
the CONF and CA random graph models and the DEG algorithm. Graph shows the
average number of people infected on a given day of the SIR simulation with prob-
ability of transmission ρ = .0122. x-axis represents the timestep for the simulation
(days). y-axis gives the number of people in the “infected” state during that timestep.
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Figure 3.14: Comparison of sparse50 graph and corresponding graphs generated by
the CONF and CA random graph models and the DEG algorithm. Graph shows
the average number of people infected on a given day of the SIR simulation with
probability of transmission ρ = .048. x-axis represents the timestep for the simulation
(days). y-axis gives the number of people in the “infected” state during that timestep.
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z1

z2

y1 z1

y2 z2
Figure 3.15: Edgeswap operation on vertices y1, y2, z1, z2.

clustering coefficient no smaller than c but is random in every other way [8]. The

model starts with an initialization step which generates a graph G = (V,E) based on

the configuration model. Recall that the configuration model takes a degree sequence

S and generates a random graph with exactly the degree sequence S. A Markov chain

process is then carried out where an edgeswap is performed on a pair of randomly

chosen edges (y1, z1) and (y2, z2) iff this edgeswap increases the clustering coefficient.

This process continues until the desired clustering coefficient is reached.

The method for randomly picking edges (y1, y2) and (z1, z2) to swap starts by

first choosing a random vertex x uniformly at random from the set of vertices with

degree greater than 1. Then a pair of neighbors (y1, y2) of x are chosen uniformly at

random from the set of all pairs of neighbors which are not connected by an edge.

Finally, two vertices z1, z2 are chosen uniformly at random from N(y1) and N(y2),

respectively, such that z1 �= x, z2 �= x, and z1 �= z2.

In our experiments, implementations of this method are quite slow on large

graphs due to the large number of vertices that influence the clustering coefficient.
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One explanation is that in doing an edgeswap, not only are triangles formed by adding

edges (y1, z1) and (y2, z2), but triangles that may be contributing to the clustering

coefficient of other vertices are being destroyed by removing edges (y1, y2) and (z1, z2).

More precisely, let com(a, c) be all vertex b such that the edges (a, b), (b, c) ∈ E, i.e.,

all vertices with edges to both a and c. Now consider in the BKM process, when

removing edge (y1, y2), each vertex v ∈ com(y1, y2) has its clustering coefficient drop

by 2
d(v)(d(v)−1) . Since performing an edgeswap is removing edges (y1, y2) and (z1, z2),

The total decrease in clustering coefficient is,

1

|G|




�

v∈com(y1,z1)

2

d(v)(d(v)− 1)
+

�

v∈com(y2,z2)

2

d(v)(d(v)− 1)



 .

Similarly, when we edges (y1, y2) and (z1, z2) are added, the clustering coefficient

increases by

1

|G|




�

v∈com(y1,y2)

2

d(v)(d(v)− 1)
+

�

v∈com(z1,z2)

2

d(v)(d(v)− 1)



 .

Thus, depending on the relative sizes and degree of the vertices in com(y1, y2) ∪

com(z1, z2) versus com(y1, y2)∪ com(z1, z2), each step in the process can be relatively

small.

Generating random graphs based on our sparse50 graph took approximately

9 hours and achieved the desired clustering coefficient of 0.311239 using the BKM

approach. Runs with parameters based on the moderate50 graph ran for over three

days, before we stopped them, and were only able to achieve a clustering coefficient

of 0.253527, still quite a ways away from the 0.413189 clustering coefficient of the

moderate50 graph. These values are given in Table 3.11. Notice that the graphs
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based on the sparse50 graph have equivalent clustering coefficient but only 1
4 of the

triangles of the original graph, suggesting that the triangles formed by the algorithm

are incident on low-degree vertices.

Table 3.11: Clustering statistics for graphs generated based on the BKM model.

Input Output HCW Output
cc cc Triangles Triangles

sparse50 0.311239 0.311239 313, 903 75, 269
moderate50 0.413189 0.253527∗ 1, 948, 462 435, 629

Shows the input clustering coefficient, the clustering coefficient of the output graph, the
number of triangles in the corresponding HCW contact network, and the number of
triangles in the output graph.

* indicates that we stopped the generation process prematurely after a number of days.

In Figures 3.16 and 3.17 we see that graphs generated based on the BKMmodel

have clustering coefficient distribution and degree-clustering correlation that is very

different from the HCW contact networks. As with the DEG algorithm proposed by

Parikh, the mean clustering coefficient of the graphs generated by the BKM model

appears to be achieved by having a large number of low-degree vertices with high

clustering coefficient. This may again be the result of having a heavy-tailed degree

distribution. Since a majority of the vertices in our HCW contact network are of

low degree, the edge-swapping algorithm is more likely to choose vertices that are

of low degree, and thus, we see that most of the achieved clustering coefficient is

due to these low-degree vertices. Further, it may be the case that because the BKM
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process relies on graphs generated by the CONF model, which has low assortativity,

the BKM model cannot efficiently increase clustering coefficient. Recall that for high

degree vertex i to achieve high clustering coefficient, there must be a large number

of edges between the neighbors of i. Thus, the neighbors of i must also be of higher

degree relative to i. But also recall that the CONF model generates unassortative

graphs. Thus high degree vertex i may not necessarily be connected to sufficient high

degree vertices to provide a higher clustering coefficient.

Finally, comparing disease diffusion curves on graphs generated by the BKM

method to the sparse50 and corresponding CONF and CA generated graphs, shown

in Figures 3.18 and 3.19, we see that the added clustering appears to have no effect on

the disease spread. More specifically, disease on the BKM graphs is nearly identical to

graphs generated by the CONF model. With low transmissibility, in Figure 3.18, we

see similar effect as with the increased clustering coefficient in DEG graphs; there is a

minor increase in the disease curve peak as compared with CONF graphs. However,

with high transmissibility, in Figure 3.19, there is no noticeable change in the disease

curve compared to the CONF graph. This is all despite the BKM graphs having a

higher clustering coefficient compared to the DEG graphs. This may suggest that

at low transmissibility, clustering may play an important role in disease diffusion

compared to high transmissibility. But the results here are only considering networks

which have increased clustering around low degree vertices and since high degree

vertices are left relatively unchanged, there is little difference in the behavior of disease

diffusion.
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Figure 3.16: Clustering coefficient distribution for sparse50 graph and corresponding
graphs generated by the BKM model. Vertices with degree less than 2 are ignored.
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Figure 3.17: Vertex degree vs clustering coefficient correlation plot for sparse50 graph
and corresponding graphs generated by the BKM model. Vertices are grouped into
bins based on degree by groups of 5.
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Figure 3.18: Comparison of sparse50 graph with graphs generated using the BKM,
CONF, and CA models with ρ = 0.0122.



www.manaraa.com

89

0 20 40 60 80

0
10

0
20

0
30

0
40

0

Day

M
ea

n 
In

fe
ct

ed

hcw
bkm
ca
conf

Figure 3.19: Comparison of sparse50 graph with graphs generated using the BKM,
CONF, and CA models with ρ = 0.048.
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3.6 Spatial-Clustering Model

We introduce a simple model for generating random graphs with clustering

that we call the Spatial-Clustering (SC) model. In this model each vertex is assigned

a point on a euclidean plane and a graph is constructed in a manner similar to the

configuration model but with a bias towards connecting stubs that are spatially close.

Random graphs described by the SC model are defined by a degree sequence

(d1, d2, . . . , dn) and parameter γ. The SC model starts with n vertices with each

vertex v having dv “open” stubs. Each vertex v is assigned a location lv = (x, y)

in Euclidean space such that 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. For two vertices u, v let

d(u, v) denote the Euclidean distance between the locations assigned to each vertex.

Let S(v) denote the set of open stubs for vertex v. The SC model constructs random

graphs by placing edges between pairs of open stubs for vertices u, v in the following

manner. For a vertex u, picked uniformly at random from all open stubs, a stub

adjacent to vertex v is picked with probability proportional to

S(v)�
w
S(w)

· 1

d(u, v)γ
.

Table 3.12 shows statistics for graphs generated by the SC model and the

HCW contact networks as well as the CONF and CA models. It is interesting to

note that all three random graph models match the exact degree distribution and

graphs generated from the SC and CA models only differ from the CONF model by

clustering coefficient and assortativity respectively.

It turns out that the graphs generated by the SC model have a very similar

clustering coefficient distribution and degree-clustering correlation as shown in Fig-
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Table 3.12: Graph statistics for the moderate50 graph and graphs generated Spatial-
Clustering (SC) with γ = 3, CONF, and Configuration with Assortativity models.

HCW SC CONF CA

n 7144 7144.0 7144.0 7144.0

m 191270 191270.0 191270.0 191270.0

�k� 53.547 53.547 53.547 53.547

σ 64.704 64.704 64.704 64.704

kmax 660 660.0 660.0 660.0

r 0.139 −0.008 −0.016 0.139
(±0.002) (±0.001)

cc 0.413 0.433 0.041 0.03
±0.002 (±0.001)

t 0.234 0.214 0.043 0.062
±0.001

c 323 300.0 300.2 315.167
(±0.4) (±0.373)

singletons 299.0 299.0 299.0 299.0

ngiant 6770 6845.0 6844.55 6814.5
(±0.921) (±1.118)

mgiant 191196 191270.0 191269.75 191254.667
(±0.536) (±0.745)

��� 3.134 2.916 2.666 2.829
(±0.003)

diam 11 6.167 5.85 8.3
(±0.373) (±0.357) (±0.458)

For random graph models values are averaged over 20 generated graphs and ± values
indicate significant (> .0001) standard deviation.
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ures 3.20 and 3.21. One theory about why the SC model is so successful is related

to the uniform distribution of clustering coefficient of the HCW contact networks.

Since the SC model distributes vertices uniformly on a 2D plane and there is a bias

or picking pairs of stubs that are close, vertices within a given area are likely to be

densely connected. Consider three vertices u, v, w such that there exists an edges

(u, v) and (v, w). Since these edges exists, it suggests that u, v and w are all spatially

close, and thus u, w must also be spatially close and edge (u, w) is also likely to exist.

By distributing vertices uniformly on the plane, all vertices are likely to have roughly

the same clustering coefficient.

Figures 3.22 and 3.23 show disease diffusion curves for the moderate50 graph

with low and high transmissibility levels respectively. While the generated graphs for

the SC have clustering coefficient and distribution that is very close to the HCW con-

tact networks, it turns out that the disease curves are more like the graphs generated

by the CONF model. The squared distances between the curves, given in Tables 3.14

and 3.16, reflect this. However, one interesting aspect of the SC graphs is that the

disease peak is lower and lags slightly behind the CONF graphs, despite infecting

roughly the same number of people. It seems that the introduction of uniform clus-

tering slows the spread of disease without reducing it. This is likely due to fewer

“long-distance” edges, since vertices are much less likely to be connected to other

vertices that are spatially far away.
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Figure 3.20: Clustering coefficient distribution for moderate50 graph and correspond-
ing graphs generated by the SC model. Vertices with degree less than 2 are ignored.

Table 3.13: Statistics for the plot in Figure 3.22 showing mean and median number
of individuals infected and the mean number of new infections each day.

HCW SC CA CONF
Mean Inf. 317.291 322.853 328.448 332.196
Median Inf. 1 1 1 1
Mean +∆ 0.229 0.163 0.248 0.176
Peak Day 39 47 40 45



www.manaraa.com

94

●●

●

●

●●

●

●
●●
●

●
●
●●

●

●

●

●
●
●
●
●

●
●

●

●
●
●●

●
●
●

●

●
●●●

●
●

●

●

●

●
●
●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●
●●●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●
●●●
●

●
●

●

●

●●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

Degree

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

● EMR
SC

Figure 3.21: Vertex degree vs clustering coefficient correlation plot for moderate50
graph and corresponding graphs generated by the SC model.

Table 3.14: Numerical comparison of the curves in Figure 3.22 measured by the sum
of the squared distances each day.

HCW SC CA CONF
HCW 0.00000 164.90980 33.11518 143.08838

Smaller values indicate more similarity
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Figure 3.22: Number of people infected on each day of an SIR simulation with low
transmissibility ρ = .0122 for the moderate50 graph and the Spatial-Clustering (SC),
Configuration (CONF), and Configuration with Assortativity (CA) models. x-axis
represents the timestep for the simulation (days). y-axis gives the number of people
in the “infected” state during that timestep.

Table 3.15: Statistics for the plot in Figure 3.23 showing mean and median number
of individuals infected and the mean number of new infections each day.

HCW SC CA CONF
Mean Inf. 1697.460 2013.200 1795.006 2017.214
Median Inf. 3 3739 3460 3739
Mean +∆ 5.997 6.941 8.145 8.002
Peak Day 22 24 22 23
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Figure 3.23: Number of people infected on each day of an SIR simulation with low
transmissibility ρ = .122 for the moderate50 graph and the Spatial-Clustering (SC),
Configuration (CONF), and Configuration with Assortativity (CA) models. x-axis
represents the timestep for the simulation (days). y-axis gives the number of people
in the “infected” state during that timestep.

Table 3.16: Numerical comparison of the curves in Figure 3.23 measured by the sum
of the squared distances each day.

HCW SC CA CONF
HCW 0.0000 900.1287 405.5003 883.2523

Smaller values indicate more similarity
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3.7 Discussion

These results suggest that not only is positive assortativity an important char-

acteristic of the HCW contact networks we generate, but also that the clustering

coefficient in these graphs may not be as important. And since the HCW contact

networks that we generate have properties similar to other real-world contact net-

works, these results may have implications for diffusion processes on networks that

arise in other contexts.

We hypothesize that positive assortativity plays a key role in the outcome

of disease spread because that there is less mixing of connections in graphs with

high assortativity. The lack of mixing in the HCW contact networks and CA graphs

is suggested by the fact that these assortative graphs have a larger diameter, as

compared with the CONF and SC graphs. At lower transmissibility this lack of mixing

helps disease survive and inevitably infect a larger fraction of the population. For

example, consider that in an assortativity graph, when a high degree vertex becomes

infected, it is more likely to pass that disease on to another high degree vertex than

a low degree vertex. When transmissibility is low, this correlation between neighbors

makes the disease more likely to continue on between vertices of high degree. At

high transmissibility this has the opposite effect, as these few high degree vertices are

densely connected in order to achieve the given assortativity and thus disease spread

tends to get suck in this densely connected “pocket” of high degree vertices. On the

other hand, graph models that incorporate clustering coefficient don’t appear to limit

the level of mixing as much. And at high transmissibility this mixing allows disease
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to quick spread to a large part of the population.
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CHAPTER 4
VACCINATION POLICIES

4.1 Vaccination Problem

We model disease diffusion as a dynamical process on a network in which,

given an initial set of infected individuals (possibly chosen at random), disease spreads

according to a diffusion modelM . In general, diffusion models describe a stochastic or

deterministic process of how some “thing” (information, disease, etc.) spreads within

a population. For our work we focus on stochastic diffusion models, which we will

refer to as disease diffusion models, that attempt to approximate the spread of disease

on social contact networks. These disease diffusion models follow the trends of SIR-

like models [50] where each individual is in one of the following states: “susceptible”

to infection, “infected” with the given disease, or “recovered” from infection and

immune to further infection. The disease diffusion model describes behavior by which

infection spreads from infected individuals to susceptible individuals and how infected

individuals eventually recover from the disease. The model used in the previous

chapter to compare random graph models is an example of one of the types of disease

diffusion models in which we are interested.

For a diffusion model M and graph G = (V,E) we let IM(G) denote a random

variable that gives the the number of people that contract the disease, which spreads

according to M , starting with a single infected individual chosen uniformly at random

from V . For a random variableX we denote with E[X] the expected value ofX. Also,



www.manaraa.com

100

we denote G \ V � as the subgraph resulting from removing vertex set V � ⊆ V from

graph G. Thus, E[IM(G \ V �)] denotes the expected number of individuals that get

infected starting with a single infected individual in V \ V � and spreading according

to M . This models the process of vaccinating a set of individuals, in this case V �,

and starting disease at random from any unvaccinated individual.

Informally speaking, there seem to be two problems relating to vaccination

from an application point of view. The first is that there is a limited supply of

vaccines available and we want to efficiently vaccinate as to minimize the spread of

disease. The second is that we would like to limit the spread of disease but would like

to minimize the cost (number of vaccinations) of doing so. Both of these problems can

be abstracted as optimization problems; given some budget we want to optimize some

objective function. In general, as one can imagine, the outcome of some epidemic has

a lot of confounding factors which makes the vaccination problem very difficult to

solve.

4.2 Budgeted Vaccination Problem

We first consider the budgeted vaccination problem which aims to minimize the

number of infected individuals by strategically vaccinating some subset of individuals.

Budgeted Vaccination problem (BV): Given a contact networkG = (V,E) with

n vertices, positive integer budget B, and diffusion model M , find

argmin
V �⊆V

E[IM(G \ V �)] s. t. |V �| ≤ B.
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The vaccination problem can be re-framed as a maximization problem by

defining the function f : 2V → Z+ as

f(V �) = n− E[IM(G \ V �)]. (4.1)

The maximization version of the vaccination problem is then,

argmax
V �⊆V

f(V �) s. t. |V �| ≤ B.

In more general terms, given the diffusion model M , the maximization version of

the vaccination problem is to pick a set of B individuals that maximize, on average,

the number of people that remain uninfected by the disease after it infects a single

individual uniformly at random. Notice that an optimal solution for the maximization

version of the vaccination problem is an optimal solution the minimization version

and vice versa.

Budgeted maximization problems like BV are NP-hard in general [78]. For

budgeted maximization of submodular functions there are well-known approximation

algorithms which provide a
�
1− 1

e

�
factor approximation [78, 20, 32, 55]. An algo-

rithm A is an α-approximation, 0 < α < 1, for a maximization problem if the cost of

the solution returned by A is at least α ·OPT where OPT is the cost of the optimal

solution. A function f : 2S → R is submodular iff

f(A ∪ {a})− f(A) ≥ f(B ∪ {a})− f(B)

for all A ⊆ B ⊆ S and a ∈ S \B.

Unfortunately the objective function for the BV is not submodular. For ex-

ample, consider a disease diffusion model M where disease spreads across an edge in
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a

b
Figure 4.1: Simple graph of two vertices between two components of equal size.
Vaccinating b alone gives really no improvement but vaccinating b along with a gives a
major improvement by separating halves of the graph. For the budgeted maximization
problem this demonstrates the objective function f violates the submodular property
of “diminishing returns.”

the contact network with probability 1. Let G be the graph shown in Figure 4.1 with

two vertices, a and b, which connect two connected components of size (n − 2)/2.

Initially G is a single connected component of size n. With f defined as in (4.1) we

have,

f(∅) = 0

f({a}) = 1

f({b}) = 1

f({a, b}) = n

2
+ 1

Since BV is difficult in general, primarily due to the dynamic nature of the

diffusion process, a number of “proxy” problems which abstract away some of the

complexity have been considered by researchers. The “proxy” problems themselves

turn out to be NP-hard and can only be solved via approximation algorithms or

heuristics. More importantly, these “proxy” problems turn out to be reasonable
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proxies only under limited circumstances, as we will show later.

4.2.1 Sum-of-Squares Partition Problem

Related literature on the problems of vaccination on contact networks make

the assumption that disease spreads in a worse-case fashion to all vertices in the con-

nected component of the initial infected individual [7, 26]. With this in mind, Aspnes

et al. [7] consider the sum-of-squares partition problem, derived from problems in

network security, which aims to minimize the sum of the squares of component sizes

in a network. Consider the worst case disease diffusion model on a graph G with con-

nection components H1, H2, . . . , Hl starting with an initial infected individual chosen

uniformly at random. The expected number of people infected is

(H1)2

n
+

(H2)2

n
+ · · ·+ (Hl)2

n
.

Based on this, given a budget of vaccinations, the intelligent choice is to try and pick

vertices in order to minimize the numerator; the sum-of-squares of the component

sizes. This is exactly the goal of the sum-of-squares partition problem.

Sums-of-Squares Partition problem: Given a graph G = (V,E) and budget B,

find V � ⊂ V of at most B vertices where removing V � from G leaves disconnected

components H1, H2, . . . , Hl such that
�

i
|Hi|2 is minimized.

Suppose that an optimal solution for the sum-of-squares partition problem

with budget B finds a partition of G into components of size h1, h2, . . . , hj. Aspnes

et al. [7] provide a polynomial time approximation algorithm that can find a set

of O(log1.5 n)B vertices that partition the graph into components h
�
1, h

�
2, . . . , h

�
k
such
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that
�

k
h

�
k
≤ O(1)

�
j
hj. This leads to an O(log1.5 n)-approximation for the sum-

of-squares problem [7].

|k2 |
|k|

|k2 |

Figure 4.2: Instance of BV for which sum-of-squares partition problem is a poor
proxy.

It is clear, or soon will be, that the sum-of-squares partition problem doesn’t

always provide “good” solutions to the vaccination problem. The goal of the sum-of-

squares problem is to partition the graph into components but it makes no guarantees

about the density of these connected components and does not take the disease diffu-

sion model into consideration. Consider the example graph of n vertices in Figure 4.2.

There are two components separated by k vertices where n � k. Each component

is composed of a ring of n−2k
2 vertices and a clique of k

2 vertices where each vertex

in the ring is connected to all vertices in the clique. For a budget of k, an optimal

solution to the sum-of-squares partition problem is the k vertices that separate the
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two components.

Let OPTs be the optimal solution to the sum-of-squares partition problem

and let Sb be the set of k vertices that make up the two k

2 cliques in each connected

component. Now consider a disease diffusion model M that spreads across edges

at each time unit with probability 1√
k
and let R0 denote the number of infections

after the first time unit (i.e., the number of secondary infections spread from the

initially infected individual chosen uniformly at random). The following lemmas hold

for graph G in Figure 4.2.

Lemma 4.1. For graph G \OPTs and disease diffusion model M , R0 ≥
√
k

2 .

Lemma 4.2. For graph G \ Sb and disease diffusion model M , R0 ≤ 3√
k
.

Lemma 4.1 follows by the following argument. If we remove OPTs from the

graph G we effectively split the graph into two connected components of size n−k

2 .

The minimum degree in the resulting graph is bounded below by k

2+2. By M , disease

will be transmitted across each edge with probability 1√
k
. Thus R0 ≥ 1√

k

k

2 =
√
k

2 .

By similar argument, if we remove Sb from the graph G we remove the cliques

in each of the two connected components. Vertices in the resulting graph have degree

bounded above by 3. Thus R0 ≤ 3√
k
and Lemma 4.2 holds.

By Lemmas 4.1 and 4.2, after one time unit, the cost of the sum-of-squares

partition solution is a 3
2 approximation for the minimization version of BV.
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4.2.2 Budgeted Vertex Cover

A second “proxy” for BV is the budgeted vertex cover problem that aims to

reduce the average degree of the graph.

For a graph G = (V,E) define the function e−
G
: 2V → Z+ as the number of

edges in the graph G \ V � for V � ⊆ V .

Min Budgeted vertex cover (Min-BVC): Given graph G and budget B find a

subset V � ⊆ V of size no greater than B that minimizes e−
G
(V �).

In general it is difficult to measure the quality of the solution returned by approxi-

mation algorithms for this problem due to the fact there are instances of the problem

with optimal value OPT = 0. Any approximation algorithm that returns a solution

S, where e−
G
(S) > 0, will have an approximation ratio of infinity if OPT = 0.

To fix this problem we can reframe Min-BVC as a maximization problem.

Define the function e+
G
: 2V → Z+ as the e+

G
(V �) = |E| − e−

G
(V �). The maximization

version of Min-BVC is then to maximize the function e+
G
over all subsets V � ⊆ V ,

|V �| ≤ B. We call this problem Max-BVC and note that e+
G
(V �) is the total number

of edges incident on vertices in V �.

It turns out that e+
G
is a submodular set function. Thus, instances of the bud-

geted vertex cover problem can be reduced to instances of the budgeted maximum

coverage problem [55]. For the budgeted maximum coverage problem the simple

greedy algorithm, which we will refer to as GreedyBVC, gives a (1− 1/e) approx-

imation. In terms of BVC, this means that for any graph, GreedyBVC will give a

solution that covers over 63% of the edges covered by the optimal solution. Further,
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Khuller et al. [55] show that this bound is the best that can be achieved in polynomial

time.

GreedyBVC starts with V � = ∅ and iteratively adds to V � the vertex, v ∈

V \ V �, which maximizes e+
G
(V � ∪ {v})− e+

G
(V �) until |V �| = B. This greedy process

is effectively picking the vertex v with highest degree, adding that to the solution set,

removing v from the graph, and repeating the process.

Consider an instance of Max-BVC on the graph G in Figure 4.2 with budget

B = k. The optimal solution to the Max-BVC problem on G is set of k vertices in the

two k/2 cliques, denoted as OPTbvc. For an instance of BV on graph G with budget

k and disease diffusion model M where disease spreads across edges with probability

1√
k
, the optimal solution to BV is exactly OPTbvc. It also happens to be the solution

returned by the GreedyBVC algorithm.

However, it is not always the case that Max-BVC will return an optimal so-

lution to the vaccination problem. Consider an instance of BV on graph G, from

Figure 4.2, with budget k and an aggressive disease diffusion model M � that spreads

to all vertices in the connected component where infection starts. The optimal solu-

tion to BV is the k vertices between the two components with an expected number

of infected of n−k

2 . However, OPTbvc has expected number of infected of n − k, and

thus, for this instance, Max-BVC provides a 2 approximation for BV.

For instances of Max-BVC on our HCW contact networks we experimentally

test the quality of GreedyBVC by comparing it with solutions of the corresponding

linear program (LP). The LP is relaxed from the IP, defined below, and gives us
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an upper bound on the optimal integer solution. An instance of Max-BVC {G =

(V,E), B} can be realized as an Integer Program (IP) by assigning a variable xu to

each u ∈ V such that xu = 1 iff u ∈ V �. We assign ye to each edge e ∈ E where

ye = 1 iff e is removed from G by dropping vertices in the solution V �. The IP is,

max
�

e

ye

subject to xu + xv ≥ ye ∀(u, v) = e ∈ E

�

u

xu ≤ B

xu ∈ {0, 1} ∀u ∈ V

ye ∈ {0, 1} ∀e ∈ E.

We can relax this to a linear program (LP) simply by relaxing the final two constraints

so that 0 ≤ xu ≤ 1 and 0 ≤ ye ≤ 1.

Experimental runs of budgeted vertex cover problem perform much better on

our HCW contact networks than is guaranteed by the approximation. Figure 4.3

shows a plot comparing the greedy algorithm for budgeted maximum coverage with

an upper bound found by solving the LP relaxation. For small budgets of vertices (less

than .1 fraction of the vertices in Figure 4.3) and large budgets of vertices (greater

than a .65 fraction of the vertices in Figure 4.3), the greedy finds the optimal solution.

When the greedy fails to achieve the lower bound, we measure the quality of the

greedy solution over the quality of the solution returned by the LP. This gives us an

experimental approximation ratio for the greedy solution. For the plot in Figure 4.3,

the worst approximation ratio, for budgets where greedy doesn’t achieve the lower
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by solving the LP relaxation. The x-axis is truncates values that have the same y
values.



www.manaraa.com

110

bound, is .96(2425). These experiments suggest that if solving BVC is appropriate

for graphs like our HCW contact networks, then the simple greedy is providing a

near-optimal solution to the vaccination problem. This would imply that vaccinating

well-connected individuals is the correct policy for vaccination.

4.2.3 Min-Max Degree

The budgeted vertex cover problem is effectively minimizing the average de-

gree. Another reasonable “proxy” problem that we consider takes the approach of

minimizing the maximum degree based on the intuition that this will minimize the

probability that disease will spread away from a given vertex.

For graph G = (V,E) let the function h−
G
: 2V → Z+ be the maximum degree

of any vertex in the graph G \ V � for V � ⊆ V .

Budgeted Min-Max Degree (BMD): Given graph G = (V,E) and budget B,

find V � ⊆ V of size no greater than B that minimizes h−
G
(V �).

The maximization version of BMD is to maximize the function h+
G
: 2V → Z+ defined

as h+
G
(V �) = ∆(G)− h−

G
(V �) where ∆(G) is the maximum degree of any vertex in G

and V � ⊆ V .

Like the Budgeted Vaccination problem, the object function h+
G
for the maxi-

mization version of BMD is not submodular. Consider the example graph in Figure 4.4
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a b

Figure 4.4: Example graph showing that hG+ is not submodular.

where we have,

h+
G
(∅) = 0

h+
G
({a}) = h+

G
({b}) = 0

h+
G
({a} ∪ {b}) = n−2

2 .

Worse news about BMD is that the natural greedy algorithm is to continually

add to the solution set the vertex which maximizes the decrease in the maximum

degree. This is problematic because at each iteration of the greedy algorithm, there

are times when removal of a single vertex will not decrease the maximum degree.

Thus a vertex has to be removed from the set of all vertices arbitrarily. An alternate

greedy algorithm would be to adopt the greedy from BVC and continually pick the

vertex of maximum degree. This algorithm is at least twice as bad as the optimal

solution as shown by the bad example in Figure 4.5.
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X nodes
of degree N-XN-X Nodes

of degree X

Figure 4.5: Bad Case for BMD. Suppose that B = X − 1 and X = N

3 so that each
gray vertex has degree 2N

3 and each black vertex has degree N

3 . The optimal solution
would be B black vertices resulting in reducing the maximum degree to N

3 + 1. A
greedy solution based on degree would pick B of the gray and the maximum degree
would remain 2N

3 . The greedy algorithm is thus at least a 2 approximation.
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4.3 Restricted Disease Problem

In addition to BV we consider its “dual” which we call the Restricted Disease

problem. Roughly speaking, the Restricted Disease problem attempts to minimize

the number of people we need to vaccinate in order to keep disease outbreak limited.

As in the previous section, for disease diffusion model M and graph G, let IM(G) be

the number of people that become infected due to a single infected individual, chosen

uniformly at random, which spreads by M .

Restricted Disease problem (RD): Given a contact network G = (V,E), budget

B, and disease diffusion model M , find a minimum size subset V � ⊆ V such

that E[IM(G \ V �)] ≤ B.

Since RD is a dual of Budgeted Vaccination, if we can solve either of these

problems optimally then we can solve the other by a binary search over inputs to the

other. More precisely, denote that the budget for Restricted Disease as BRD and the

denote the budget for Budgeted Vaccination as BBV . To solve Budgeted Vaccination

with budget BBV suppose that we are given an oracle for finding the optimal solution

to Restricted Disease. In polynomial time we could find, by considering all possible

budgets, the minimum budget BRD such that the solution produced by the oracle

has cost no greater than BBV . The solution returned by the oracle would then be an

optimal solution to BV with budget BBV . The same procedure can be used in the

opposite direction, given an oracle for optimally solving Budgeted Vaccination, for

solving instances of RD with budget BRD.



www.manaraa.com

114

However, since neither Restricted Disease nor Budgeted Vaccination can be

solved optimally in general, we consider a number of “proxy” problems for Restricted

Disease. These problems turn out to be NP-hard an thus we must rely on approxi-

mation algorithms or heuristics.

4.3.1 Partial Vertex Cover

If we ignore the complication introduced by the disease diffusion model M

and suppose that we can bound the spread of disease by reducing the density of the

contact network, then RD can be approximated by the k-partial vertex cover problem.

That is, we think of wanting to “cover” a given number of edges as a way of limiting

the spread of disease.

k-Partial Vertex Cover problem (k-PVC): Given a graph G = (V,E) and pos-

itive integer k, find a minimum size set of vertices V � ⊆ V that covers at least

k edges in G. A vertex v is said to cover all the edges incident on it.

The k-PVC problem is a special case of the k-partial set cover problem [43].

The k-partial set cover problem is given a set of elements U and collection of subsets

S ⊆ 2U and it aims to find a minimum size set S ⊆ S that covers at least k members

of U . An element u ∈ U is said to be covered by S ⊆ S if there is a set A ∈ S such that

u ∈ A. In general this problem is NP-hard [44] but there are known approximation

algorithms, utilizing a primal-dual approach, which provide an α-approximation given

that no element u ∈ U occurs in more than α sets in S. The reduction from k-PVC

is as follows. Each set Sv ∈ S corresponds to a vertex v ∈ V such that Sv is the



www.manaraa.com

115

set of edges adjacent to v. Since each member ue is in exactly two sets Su, Sv, where

u, v correspond to the endpoints of edge e, k-PVC can be approximated within a

factor of 2 [43]. The algorithm for finding an α-approximate solution to k-PVC works

by assuming the set A, for each set A ∈ S, is in the solution and then solving the

dual under this assumption. The algorithm and analysis of approximation for the

α-approximate solution to k-PVC is given by Gandhi et al. [43] and relies on the LP

given below.

The IP formulation of the partial vertex cover problem for a graph G = (V,E)

with n vertices and m edges and integer k is given as follows. For each vertex v ∈ V

we have a variable xv and we say xv = 1 iff Sv is in the solution S. Similarly we

assign to each edge e ∈ E a variable ye and say that ye = 1 iff edge e is “uncovered”

by some set in S. The LP relaxation of this IP is,

min
n�

v=1

xv

subject to ye +
�

v:v∈e
xv ≥ 1 e = 1, 2, . . . ,m

m�

e

ye ≤ n− k

xv ≥ 0 v = 1, 2, . . . , n

ye ≥ 0 e = 1, 2, . . . ,m

The first constraint makes sure that if an edge e = (u, v) is covered, ye = 0, then

either xu or xv is greater than one, i.e., one of the edges endpoints is added to the
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solution set S. The second constraint makes sure that there are no more than n− k

edges that are uncovered in S.

The corresponding dual LP contains a variable ve for each of the first m con-

straints and a variable z for constraint
�

m

e
ye ≤ n− k.

max
m�

i=e

ve − (n− k)z

subject to
�

e:e∈Sv

ue ≤ 1 v ∈ V

ue ≤ z e = 1, 2, . . . ,m

ue ≥ 0 e = 1, 2, . . . ,m

z ≥ 0

Experiments using the algorithm given by Gandhi et al. [43] shows that it

performs much better than the worst case ratio on the HCW contact networks we

generate. In Figure 4.6 we compare the approximation against a lower bound, found

by solving the LP given above for k-PVC, and rounding it up. We round the fractional

LP solution up because in practice solutions cannot be fractional.

From the Figure 4.6 we can see that for all values of k we tested, the algorithm

actually finds solutions which approximate the optimal solution of k-PVC a factor of

at most 1.25. For small values of k the solutions returned by the approximation are

optimal. While we want to cover as many edges as possible properly vaccinating the

“right” individuals may not require that all edges need to be covered. And so while

we would like the approximation ratio to be optimal, we may also not have to worry

about large values of k.
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Figure 4.6: Experimental comparison of the solution to k-PVC produced by Gandhi
et al. [43] with the lower bound found by solving the corresponding LP. Points are
annotated with the approximation ratio relative to the lower bound.
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Interestingly, solutions to k-PVC are solutions to certain instances of the Max-

BVC. k-PVC is given as input a graph G and integer k. The solution returned by

k-BVC is a minimum size set of vertices V � and covers at least k edges. If we denote

the size of V � as I, then V � is also a solution to the Max-BVC problem with budget

of vertices B = l; removing the set V � from G will remove at least k edges. Thus,

we can find a solution to an instance of BVC {G,B} by repeatedly “guessing” values

of k and finding a solution V � to the k-PVC instance {G, k}, until we find maximum

k such that |V �| ≤ B. Since k is bounded by the number of edges in G, m, we can

find a solution in O(logm) time. However, there is no guarantee on how good of a

solution V � is relative to OPT for the corresponding instance of BVC.

Experimental runs comparing greedy solutions for BVC and k-PVC (given in

Figure 4.7) show that both solutions are nearly equivalent. That is, solutions obtained

by the primal-dual approximation for k-PVC are as good as the approximations ob-

tained by the greedy for corresponding instances of BVC, and vice versa. Since the

GreedyBVC is far easier to solve, this suggests that using BVC to approximate RD

is as good as approximations obtained by solving k-PVC.

4.3.2 Restricted Max Degree

Recall that in the BMD problem we place a bound on the number of vertices to

remove and the objective is to minimize the maximum degree. A “dual” formulation

of BMD would be one in which we want to bring the maximum degree below some

given threshold while removing the fewest number of vertices. We call this problem
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Figure 4.7: Comparison of approximate solutions for k-PVC used to solve instances
of Max-BVC. The dashed line shows the result from GreedyBVC , the solid line
shows the solution found by the primal-dual k-PVC algorithm given by Gandhi et al.
[43], and the dotted line shows the lower-bound of the k-PVC problem based on the
LP solution.
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Restricted Max Degree problem.

Restricted Max Degree (RMD): Given a graph G = (V,E) and maximum de-

gree threshold k, find a minimum size subset V � ⊆ V such that,

max
v∈V \V �

d�(v) ≤ k

where d�(v) is the degree of vertex v in the graph G� = G \ V resulting from

removing V �.

RMD can be reduced to a well-known generalization of set cover called multiset

multicover. In the multiset multicover problem we are given a collection of multisets

S = {S1, S2, . . . , Sn} over a set U and collection of demands R = {ru|u ∈ U} for each

element in U . Let M(S, e) denote the multiplicity of e in the multiset S ⊆ U . The

objective of multiset multicover is to find a minimum size subset S ⊆ S such that

M(
�

Si∈S

Si, u) ≥ ru

for each element u ∈ U .

Theorem 4.3. If there is a β-approximation for MSMC then there is a β-approximation

for RMD.

Proof. Let H = (G, k) be an instance of RMD where N(v) denotes be the set of

neighbors of v and d(v) = |N(v)| denotes the degree of vertex v. To construct an

instance H � = (U,S, R) of multiset multicover, let U = {v ∈ V |d(v) > k} and

R = {rv|v ∈ U} where rv = d(v) − k. To construct S we construct a Sv ∈ S for

each v ∈ V in the following manner. For vertex v we add d(v) − k copies of v, such
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that M(Sv, v) = d(v) − k and a single instance of every vertex u ∈ N(v) such that

M(Sv, u) = 1. Thus each multiset Sv is of size 2d(v)− k.

Suppose that is an algorithm A that gives a β approximation to multiset

multicover. Starting with an instance H = (G, k) we reduce to an instance H � =

(U,S, R) as outlined above. Running A on H � will return a subset S ⊆ S such

that |S| ≤ β|OPT | where OPT ⊆ S is the optimal solution to the instance H �.

Each multiset Su ∈ S corresponds to a vertex in the graph G such that u’s removal

from the graph will decrease it’s own degree to 0 and will decrease the degree of its

neighbors by 1. And by the definition of the MSMC problem, the solution S covers

every element u ∈ U at least ru times. Note that each element in u corresponds to

an vertex in the graph G with degree d(u) > k and the requirement ru = d(u) − k.

Let V � ⊆ V be the subset of vertices v such that Sv ∈ S. Then removing V � from G

will reduce the degree of vertex u to at most d(u). Thus S is a feasible solution to

H. By the same argument the set of subset of vertices VOPT ⊆ V , corresponding to

each v such that Sv ∈ OPT , is an optimal solution to the RMD problem. And since

|S| ≤ β|OPT | then |V �| ≤ β|VOPT |.

The best known approximation for the multiset multicover is a simple greedy

algorithm that repeatedly picks the multiset that satisfies the most element require-

ments. This greedy algorithm provides an O(log(m)) approximation guarantee where

m is size of the largest multiset. By Theorem 4.3 the greedy algorithm for MSMC

provides an O(log(z)) approximation for RMD where z ≤ 2∆(G) − k and ∆(G) is

the maximum degree of any vertex in G. The bound on z is due to the reduction to
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MSMC. Notice that the maximum degree vertex in G, say v�, will have d(v�)−k copies

of itself and a single copy of each of its neighbors u ∈ N(v�) in the corresponding Sv�

given by the reduction to MSMC. And thus the largest multiset after the reduction

will have size 2∆(G)− k.

Like the other optimization problems considered before, we can formulate

RMD as an LP in the following way. Let G = (V,E) be a graph with n vertices

and m edges, and let k be an integer. For each vertex v ∈ V assign a variable xv and

say xv = 1 iff v ∈ S (the solution set for RMD). For each edge e ∈ E assign a variable

ye such that ye = 1 iff e is “uncovered” by a vertex in the solution set S. Then the

LP (already a relaxed from the IP) is,

min
n�

j=1

xj

subject to yi +
�

j:j∈ei

xj ≥ 1 i = 1, 2, . . . ,m

�

i:nj∈ei

yi ≤ k j = 1, 2, . . . , n

We solve the LP of RMD and compare it to experimental runs of the greedy

algorithm for MSMC. As before, we round up the LP solution since valid solutions

to RMD are not fractional. Results are shown in Figure 4.8.

4.3.3 Discussion

In general, optimal solutions considered by researchers as “proxy” problems

do not provide optimal solutions to BV and RD. Since these “proxy” problem are
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Figure 4.8: Comparison of experimental runs of the greedy solution to RMD an upper
bound calculated by solving the LP relaxation on the moderate1 graph. LP solutions
are rounded up to the nearest integer. The x-axis denotes the integer k and the y-axis
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themselves NP-hard, and thus we can only achieve approximate solutions, makes the

situation is even worse. However, we have shown significant evidence that suggests in

most cases, simply solving Max-BVC, utilizingGreedyBVC, provides good solutions

to BV and RD on our HCW contact networks.

4.4 Experimental Analysis of Simple Vaccination Policies

Using generated HCW contact graphs as a proxy for disease-spreading con-

tacts within the UIHC population, we compare the effectiveness of several different

vaccination policies. We assume that any vaccination that is administered is 100%

effective and effective immediately. This assumption allows us to model the action of

vaccinating a person v as the deletion of the vertex v from the HCW contact graph.

Given a budget of vaccinations b, a vaccination policy tells us which b people from the

population to vaccinate. More precisely, given a budget b ≥ 0, a vaccination policy is

a probability distribution over all size-b subsets of the population indicating the like-

lihood of a particular size-b subset being chosen. To a large extent our work focuses

on the special case of vaccination policies that are deterministic, i.e., ones that assign

probability 1 to exactly one size-b subset and probability 0 to all others. Here we

evaluate five simple vaccination policies; random, degree-based, weighted-degree-based,

distance-based, and computers-based.

Random policy. Repeatedly pick an individual for vaccination by sampling vertices

uniformly at random from the HCW contact network.

Degree-based policy. Let G = (V,E) be a HCW contact network and let S ⊆ V be
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the set of HCWs already vaccinated. Repeatedly pick for vaccination a person

with highest degree in G− S. Break ties uniformly at random.

Weighted-degree-based policy. Let G = (V,E) be a HCW contact network. Each

edge {u, v} ∈ E has an associated weight w(u, v) that represents the the number

of contacts between individuals u and v during time window T . Define the

weighted degree of a vertex v in a HCW contact network G as
�

u∈N(v) w(u, v),

where N(v) is the set of neighbors of vertex v in G. Let S ⊆ V be the set

of already vaccinated healthcare workers. Repeatedly pick for vaccination a

person with highest weighted degree in G−S. Break ties uniformly at random.

Distance-based policy. Let the distance traveled by a HCW in a time window T

be the sum of shortest-path hop distances between the locations of consecutive

logins within that window. Repeatedly pick the person with the most distance

traveled during time window T . Break ties uniformly at random.

Login-heterogeneity-based policy. Repeatedly pick the healthcare worker who

logs into the most distinct computers in time window T . This is given by

the individual’s degree in the computers-people graph for time window T (see

Chapter 2 for discussion on the computers-people graph). Break ties uniformly

at random.

The random policy is oblivious to the characteristics of individual HCWs, picking

uniformly at random from the population. The degree-based and weighted-degree-

based policies pay attention “connectivity” characteristics. The distance-based and

login-heterogeneity-based policies pay attention to “spatial” characteristics.
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(a) (b)

(c) (d)

Figure 4.9: Example vaccination policies on a subgraph of an EMR contact network.
(a) Small portion of the sparse1 contact network (b) Results of vaccinating 50% of
the population using the random policy. The result is still one single component.
(c) Results of vaccinating 50% of the population using the degree-based policy. (d)
Results of vaccinating 50% of the population using the distance-based policy. In both
(c) and (d) the HCW contact network is “shattered” into many tiny components.
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The effectiveness of a vaccination policy is, in a sense, how well implementation

of the policy reduces disease spread. Let G be a HCW contact network and let G�

be the graph that is obtained from G by deleting the healthcare workers selected by

the policy. Figure 4.9 illustrates how different policies can affect different outcomes.

In this example the degree-based and distance-based “shatter” the graph, separating

vertices into small connected components, versus the random policy which results in

a single connected component with decreased density.

To experimentally measure the effectiveness of a vaccination policy we use two

metrics.

1. The expected number of infected people in G� based on an SIR modelM . Specif-

ically, we use the SIR model M as defined in Section 4.1 and measure E[IM(G�).

Since efficiently calculating E[IM(G�)] directly is an open problem [54] we take

average from repeated runs of agent-based simulations. We use a method called

fast-diffuse [108] that allows each simulation in time roughly linear in the num-

ber of edges. For this model, 100 simulations take approximately 3 seconds and

we run 10, 000 simulations per graph G�.

2. Expected size of the largest connected component in G�. This is a deterministic

worst-case measure that supposes that any individual who comes in contact with

an infected individual, also becomes infected. This measure has the advantage

of being computationally cheap, computed in time linear to the size of the graph,

but it ignores disease characteristics and differences in strengths of contacts.
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Figures 4.10 and 4.11 compare the five policies using agent-based simulations

of a disease diffusion model, introduced in Section 3.4, which emulates the spread

of influenza. In these experiments we characterize our simulations by the “peak

transmission” probability p that specifies the probability of transmitting disease on

the second day of infection. Recall that each edge (u, v) in our HCW contact networks

have associated edge weight w(u, v). More specific information on how edge weights

are used these simulations is given in Section 3.4. An interesting aspect of these

plots is that with the lower transmission probability p = .07 the weighted-degree

policy does slightly better than the degree policy, whereas with higher transmission

probability p = .5 the degree policy does better. This difference is likely due to

the fact that when transmissibility is high, even low weight edges will have a high

probability of transmitting disease. This follows our intuition that when disease has

a low transmissibility, low weight edges are less likely to transmit disease and thus

looking at the weight of edges, as opposed to the degree, is more important.

Figures 4.12, 4.13, and 4.14 compare the five vaccination policies on the

sparse1, moderate1, and dense1 graphs, respectively, using the size of the largest

connected component. Recall that sparsei, moderatei, and densei graphs correspond

to the timewindow T = i and graphs generated with parameters d = 1, t = 0,

d = 3, t = 15, and d = 5, t = 30 respectively.

The first thing to note is that the connected-component measure preserves

the relative differences between policies when transmissibility is high. But since the

connected component measure is irrespective of transmissibility, it is unable to identify
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Figure 4.10: Effectiveness of vaccination policies on the moderate1 HCW contact net-
works measured by the expected number of people infected as a result of simulation
of an SIR disease diffusion simulation with peak transmission probability p = .07.
The x-axis represents the budget of vaccinations as a fraction of the total popula-
tion. The y-axis represents the expected fraction of the population infected based on
experiments.
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Figure 4.11: Effectiveness of vaccination policies on the moderate1 HCW contact
networks measured by the expected number of people infected as a result of simula-
tion of an SIR disease diffusion simulation with peak transmission probability p = .5.
The x-axis represents the budget of vaccinations as a fraction of the total popula-
tion. The y-axis represents the expected fraction of the population infected based on
experiments.
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Figure 4.12: Effectiveness of five different vaccination policies on the sparse1 contact
network as measured by the size of the largest connected component in the unvacci-
nated network. The x-axis represents the percentage of people vaccinated. The y-axis
represents the size of the largest connected component as a percentage of the size of
the entire graph.
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Figure 4.13: Effectiveness of five different vaccination policies on the moderate1 con-
tact network as measured by the size of the largest connected component in the
unvaccinated network. The x-axis represents the percentage of people vaccinated.
The y-axis represents the size of the largest connected component as a percentage of
the size of the entire graph.
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Figure 4.14: Effectiveness of five different vaccination policies on the dense1 contact
network as measured by the size of the largest connected component in the unvacci-
nated network. The x-axis represents the percentage of people vaccinated. The y-axis
represents the size of the largest connected component as a percentage of the size of
the entire graph.
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the advantage that the weighted-degree policy has over the degree-based policy in

Figure 4.13. This relates back to our earlier discovery that policies which assume

a high level of transmissibility may fail to adequately capture real-world behavior

when transmissibility is low. That is, measuring these policies without concern for

transmissibility can be inaccurate in some cases.

In all of our experiments the connectivity-based policies, degree-based and

weighted-degree-based, perform consistently better than other policies. Still, the

spatial-based policies, distance-based and login-heterogeneity-based, perform quite

well relative to the random policy. Figure 4.15 gives a scatter plot showing the

correlation between degree and distance for each vertex in the moderate1 graph.

There appears to be minor correlation between degree and distance but there are a

number of outliers, specifically vertices with high distance traveled and low degree,

that are likely causing the policy differences we see. One advantage to the spatial-

based policies, in practice, is that they are easier to implement. We can imagine

that asking HCWs to wear pedometers or a simple analysis of login records would

be feasible for hospital administrators to implement in order to inform a targeted

vaccination campaign.

The experiments presented thus far give the connectivity-based policies an

unfair advantage by evaluating them on the very same networks that they were gen-

erated from. A more realistic evaluation would generate connectivity-based policies on

a particular HCW contact network, but evaluate these on a different, but structurally

similar network. Since we have many HCW contact networks at our disposal, such an
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Figure 4.15: Comparison of distance traveled, as measured by number of hops between
consecutive logins, versus the degree of each vertex in the moderate1 graph.
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evaluation is easy and is shown in Figure 4.16. Even though the connectivity-based

policies still outperform the mobility-based policies, the difference is much less strik-

ing. But also remember that the HCW contact networks are simply an approximation

of actual interactions of HCWs for a single time slice and as these actual networks are

constantly evolving. From our limited experiments it appears that distance is more

resilient to this change in the contact network.

To validate the behavior of our vaccination policies is consistent over all time

periods that we have login data for, we plot effectiveness as measured by the size

of the expected number of infected individuals for eight different four-week periods

spread out throughout the entire 22 month period for the degree and distance poli-

cies. Validation is shown in Figure 4.17. While between time periods there is some

minor variation, likely due to minor differences in the network structure, the relative

behavior between different policies is consistent between time windows.

For completeness we have also considered solutions to k-PVC and RMD as

possible vaccination policies. Recall from Section 4.3.1 that the k-PVC is to find

a minimum size set of vertices that covers at least k edges. The sets of vertices

that is returned as solutions to the k-PVC can be considered as vaccination policies.

Figure 4.18 shows experimental runs of the k-PVC-based policy compared to the

degree and distance based policies. As we can see polices based on k-PVC-based do

much better than the spatial-based policies, but there appears to be no advantage to

considering the k-PVC-based policy over the degree policy. It is not entirely surprising

that policies derived from solutions to k-PVC do not outperform the degree policy.
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Figure 4.16: Effectiveness of vaccination policies on a “time-shifted” HCW contact
network. The connectivity-based policies are generated from the moderate1 HCW
contact network. The mobility-based vaccination policies are generated using the
EMR login data for the same time window T = 1. The plot shows the effectiveness
of these policies on the “time-shifted” HCW contact network, moderate5, measured
by the expected number of people infected starting from a single infected individual
chosen uniformly at random. The T = 1-network and the T = 5-network not only
differ in edges, but also in the HCWs they contain as vertices.
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(a) (b)

Figure 4.17: Vaccination policies (a) degree and (b) distance for eight different
moderate contact networks generated from four week periods spread throughout the
22 month period we have data for. Polices are evaluated by measuring the size of the
largest connected component after vaccination. The x-axis represents the budget of
vaccinations as a fraction of the total population. The y-axis represents the expected
fraction of the population infected based on experiments.

Note that the degree-based policy is the solution to BVC returned by theGeedyBVC

algorithm. BVC is, roughly speaking, to minimize the number of edges given a budget

of vertices, andGreedyBVC provides a (1−1/e) approximation. On the other hand,

k-PVC is the “dual” problem to BVC, but the approximation used to solve k-PVC is

a 2-approximation and makes no guarantee about the quality of the solution return

as applied to BVC.

Similarly we can consider solutions to RMD as possible vaccination policies.

Recall from Section 4.3.2 that RMD is to find a minimum size set of vertices whose

removal from the graph will lower the maximum degree below some threshold k. From

Figure 4.19 we can see that, like the k-PVC-based policy, the RMD-based policy

does much better than the distance-based policy but does not appears to provide an
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Figure 4.18: Effectiveness of the degree-based, distance-based, k-PVC-based, and
anonymous policies on the moderate1 HCW contact networks measured by the ex-
pected number of people infected as a result of simulation of an SIR disease diffusion
simulation with peak transmission probability p = .5. The x-axis represents the bud-
get of vaccinations as a fraction of the total population. The y-axis represents the
expected fraction of the population infected based on experiments.
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advantage over the degree-based policies.

Figure 4.19: Effectiveness of the degree-based, distance-based, RMD-based, and
anonymous policies on the moderate1 HCW contact networks measured by the ex-
pected number of people infected as a result of simulation of an SIR disease diffusion
simulation with peak transmission probability p = .5. The x-axis represents the bud-
get of vaccinations as a fraction of the total population. The y-axis represents the
expected fraction of the population infected based on experiments.

4.4.1 Improving on Simple Heuristics

To improve on the degree-based policy, we consider an enhancement that takes

into account the “community structure” of the underlying network. Roughly speak-



www.manaraa.com

141

ing, our idea is to identify cuts with very low transmissibility. A cut is a subset of

edges of the network whose removal increase the number of connected components

by at least one. Suppose that G = (V,E) is a connected graph and C is a cut in G

such that G \ C has two connected components G1 and G2. If C has very low trans-

missibility, then a disease that is initiated in G1 is unlikely to infect any individual

in G2. This implies that vaccination policies can ignore the edges in C.

Figure 4.20: Example graph of communities with high weight intra-community edges
and low weight edges between communities. Thin lines represent low-weight edges
and thick lines represent high-weight edges. Communities are circled by a dotted line.

Based on this idea we introduce a policy called the mincut-degree policy de-

scribed as follows. Suppose that we are given HCW contact network G = (V,E) for

time period T (in days), a fractional threshold thresh, and peak transmission proba-

bility p. As in the previous chapters, p denotes a vector of probabilities {p1, . . . , pk}

where pi denote the disease transmission probability for day i. For edge e let tr(e) =
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1 −
�

k

j
(1 − pj)w

�(e) be the probability of disease transmission across edge e, where

w�(e) = w(e)/T is the weight of edge e averaged over the time period T , and for set of

edges X let tr(X) =
�

e∈X tr(e). Further, denote the connected components of graph

H as components(H) and let mincut(H) be the set of edges in the minimum edge

cut on H. The first step in the mincut-degree policy is to find a set of non-influential

edges E � (i.e., edges that are unlikely on their own or when combined with other edges

to be vehicles for disease spread).

Algorithm 4.1 First step of mincut policy

1. C ← components(G)
2. E � ← ∅

3. while C �= ∅
4. Pick H from C uniformly at random.
5. C ← C \ {H}
6. M ← mincut(H)
7. if tr(M) ≤ thresh
8. C ← C ∪ components(H −M)
9. E � ← M
10. end if
11. end while
12. return E �

Roughly speaking, Algorithm 4.1 repeatedly calls the mincut algorithm on the

connected components of G and either removes the edges in the minimum cut, in

the case that the probability of disease transmission across the cut is no greater than

thresh, or ignores the component as a candidate for future cuts, in the case that

disease transmission across the cut is greater than thresh. The result of this stage



www.manaraa.com

143

is a set of edges E � that fall across cuts that have low transmission probability (i.e.,

less than thresh). For our experiments we rely on the min-cut algorithm included in

the igraph library [30] which is based on the min-cut algorithm by Stoer and Wagner

[104].

The second part of the mincut-degree policy is to perform degree policy on

the graph G� = (V,E \ E �) where E � is the output from running algorithm 4.1 on G.

Removing edges E � effectively ignores edges which will be unlikely to transmit disease

and allows the degree policy to focus on vertices with high degree of “relevant” edges.

Even though in theory the mincut-degree policy should perform better than

the degree policy, in practice, runs of the mincut-degree policy reveal no significant

improvement over the degree-based policy (see Figure 4.21).

Table 4.1: Parameters used in testing the mincut-degree-based policy.

p {.01, .02, . . . , .09, .1, .2, . . . , .6}
thresh {.01, .02, .03, .04, .1, .2, .3, .4, .5}

We examine the graphs resulting from removing the edges returned by the

process defined in Algorithm 4.1 for all pairs of p and thresh given in Table 4.1. After

removing edges the connected component distribution remains one giant component

and a large number of tiny components, mostly singleton vertices. This suggests

mincut algorithm is “trimming” vertices from the boundary of the graph as illustrated

in Figure 4.24. This behavior is likely the consequence of the positive assortativity
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Figure 4.21: Comparison of the effectiveness of the mincut-degree-based policy and
degree-based policy. Policies are generate from the moderate1 graph for time window
T = 1, peak transmission probability p = .07, and thresh = .3

Table 4.2: Statistics for the graph resulting from removing edges returned by the
mincut process in Algorithm 4.1.

p = .07 p = .1 p = .5
thresh = .3 thresh = .3 thresh = .5

Edges Removed 16,508 10,216 2,527
Giant Comp. Size 4414 4816 5698

Second Largest Comp. Size 8 8 6

Gives the size of the giant component, size of the second largest component, and the
number of edges removed from the graph due to the mincut algorithm.
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Figure 4.22: Comparison of the effectiveness of the mincut-degree-based policy and
degree-based policy. Policies are generate from the moderate1 graph for time window
T = 1, peak transmission probability p = .1, and thresh = .3
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Figure 4.23: Comparison of the effectiveness of the mincut-degree-based policy, and
degree-based policy. Policies are generate from the moderate1 graph for time window
T = 1, peak transmission probability p = .5, and thresh = .5

Figure 4.24: Trimming of boundary vertices as a result of the mincut percolation
process.
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exhibited by the HCW contact networks. Recall that positive assortativity, in general

terms, means that high degree vertices to have edges with other high degree vertices.

Newman [85] performed a number of experiments on random graph models with

positive assortativity. His conclusion is that graphs with high assortativity exhibit a

giant component at lower edge density. That is, if we think about the graph starting

with no edges and growing, by adding more edges, graphs with high assortativity

form a giant component at lower edge density than graphs with no, or negative,

assortativity. Newman describes this as a “core group” of vertices which are very

densely connected, with lower degree vertices that are simply “attached” to this core

group. Further, his analysis suggest that assortative graphs are resilient to vertex

removal and thus network connectivity of these assortative networks is not easily

“destroyed”. These claims would also explain the observations we see here and give

further evidence that assortativity is an important property of our HCW contact

networks. Also, positive assortativity means that a high degree vertex is unlikely to

be connected to a lot of low degree vertices (i.e., those which would be “cut” by the

mincut algorithm). Thus, these high degree vertices are unlikely to see a decrease

in their degree based on this algorithm. As part of our investigation of the behavior

we see here, we calculated the correlation between the degree of a vertex and the

mean weight of adjacent edges and found a Pearson correlation coefficient of .05 with

p-value 0.0002). This means that high degree vertices are more likely to have an

incident edge of high weight.
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CHAPTER 5
BUDGETED MAXIMUM COVERAGE

The Emerging Infections Network (EIN) (http://ein.idsociety.org/) is a

“sentinel” network of clinical infectious disease specialists, primarily from the United

States, created in 1995 by the Infectious Diseases Society of America with a Co-

operative Agreement Program award from the Centers for Disease Control (CDC).

The goal of the EIN is to assist the CDC and other public health authorities with

surveillance of emerging infectious diseases and related phenomena (new treatment

protocols, possible side effects of new vaccines, etc). To achieve its goal, the EIN

maintains a private listserv open to infectious disease specialists, CDC investigators,

and public health officials. There are currently over 1400 subscribers who receive

roughly 3 emails per day. Since its inception, the EIN listserv has served over 2800

discussions on the identification of new infectious diseases, treatments, and policy

implications.

There are a few features that distinguish the EIN listserv from other online

mailing lists. Each submission (post) to the EIN listserv is sent to the EIN coordi-

nator, a person responsible for managing the mailing list. The EIN coordinator is

responsible for screening and filtering each post by fixing grammatical errors, provid-

ing links to citations, and removing any identifying patient information. Each post

received by the EIN coordinator is either the start of a new thread, if that post is

about a new topic, or a response to a previous post in an ongoing thread. Posts are

collected throughout the day and bundled into a mailing which is broadcast to all
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subscribers the following morning.

Recent work at Google [45] (http://www.google.org/flutrends/) and Ya-

hoo! Research [93] has focused on using search engine query terms as a means of

tracking the spread of influenza. In the spring of 2009 as news of swine flu spread,

numerous projects were initiated that used Twitter posts to track and observe the

spread of the infection (see this project at Iowa [101] for an example). The EIN

provides very different kind of information to public health officials compared to the

large scale online efforts that attempt to tap into the “wisdom of the crowds.” Even

though the EIN is sometimes the first to detect or report an outbreak, its real utility

comes later when clinical aspects of emerging infectious diseases get discussed. For

example, in the spring of 2009 when news of the H1N1 virus was everywhere in the

popular media, the EIN was relatively quiet on this topic. However, in late 2009 the

EIN was buzzing with H1N1 related posts as doctors and public health officials get

ready to deal with a large number of cases. EIN members were discussing not just

the emergence or spread of H1N1, but its treatment, vaccine administration, patient

care, etc. [1, 2, 3]. One EIN member posted their concern about H1N1 vaccine re-

acting to neural tissue and causing Guillain-Barré Syndrome (GBS), a rare disorder

resulting in limb weakness and paralysis. One responder identified a possible case

of this and another pointed to historical evidence supporting the original concern.

Further discussion amplified these concerns and provided information to the CDC

which instituted a case-finding protocol to monitor the situation, not only for GBS

but for all immunization side-effects. Another EIN member identified a situation
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where healthcare workers were refusing to treat patients with H1N1 due to fear of

exposure. Responders noted similar experiences, identified ethical concerns, and sug-

gested policies. Occasionally discussion on the EIN can lead to discovery of previously

unknown virus strains. For example, a post on the EIN in 2005 reported a number

of severe pneumonia cases caused by the adenovirus, a common cause of respiratory

illness [24]. Responses on the EIN mailing list helped identify these initial instances

as a rare strain of community-acquired pneumonia which was previously unrecognized

and later dubbed “the killer cold.”

Identifying threads that are important is currently ad hoc, done by simply

reading all the posts that make their way to the EIN. There is significant interest

in improving the accuracy and timeliness with which this information is identified so

that it can be distributed to the CDC and other healthcare organizations. Motivated

by this need and the expectation that the EIN will grow in size in the near term,

our goal is to develop a simple, low-cost procedure that can be used to sample traffic

on the EIN and predict the emergence of important threads. Such a procedure will

help focus the attention of doctors and public health officials to important, emerging

discussions on the EIN. Ideally, we want to be able to identify threads that have the

potential to become “important,” and ignore threads that are “noise.” Our approach

is to look at historical EIN data (we have EIN data from Feb. 1997 to May 2009)

and identify users who typically participate in the early stages of many important

threads, but are involved in very few unimportant threads. If we are able to identify

such “bellwether” users, then tracking these users can quickly point people who make
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policies to emerging important threads that are in their early stages of evolution,

without inundating them with irrelevant information.

Suppose we have identified a set S of these “bellwether” users. Anyone wanting

to identify important discussions, can follow this simple monitoring procedure:

An unmarked thread t is marked “to be monitored” as soon as a member

of S posts to t. Thread t is closely monitored until it dies or is deemed

irrelevant.

The problem is then to find a set S of EIN participants who act as “bellwethers.”

That is, find a set S of users who participate in many important threads, but do not

participate in many unimportant threads.

The above monitoring procedure presupposes a classification of threads into

important threads, those that contain emerging phenomena worth closely following

and unimportant threads, those that are irrelevant from the point of view of infec-

tious disease concerns. This classification can be done in an automated manner or

by consultation with a infectious disease expert. This classification can also be prob-

abilistic: to each thread t we associate a probability p(t) of being important (and

therefore a probability 1− p(t) of being unimportant). We also need a precise notion

of participation in a thread. Since we are interested in early detection, we use a

parameter m and say that a user u participates in a thread t if u makes a post to t

within the first m mailings. Once these notions are defined precisely, we can associate

with every subset S of users a reward r(S) and a cost c(S). r(S) can be defined as

the number of important threads in which users in S participate. In other words,
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r(S) is the number of important threads that will be monitored if the set S of users

is tracked. c(S) can be defined as the number of unimportant threads in which users

in S participate. In other words, c(S) is the number of unimportant threads that

will have to be monitored if the set S of users is tracked. More general definitions of

reward and cost are possible; for example, we could associate with each thread t a

weight w(t) and define r(S) as the sum of the weights of important threads in which

users in S participate. The definition of c(S) can be generalized in a similar man-

ner. If the notion of important and unimportant threads is defined probabilistically,

then the definitions of reward and cost can be extended to refer to expected values.

In this setting, good choices for S are obtained by solving the following budgeted

maximization problem:

max
S⊆U

r(S) s. t. c(S) ≤ B

Here U is the set of all users and B is a given cost budget.

All of the different versions of the reward function r : 2U → R+ mentioned

above are submodular. Recall that a function f : 2U → R+ is said to be submodular

if f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) forall A,B ⊆ U . The problem of maximizing

submodular set functions has a long history dating back to the 70’s [78]. In their

seminal work, Nemhauser et al. [78] consider the problem of maximizing a submodular

set function f : 2U → R+ subject to a cardinality constraint. They show that a

simple greedy algorithm yields a (1− 1
e
)-approximation. Calinescu et al. extend this

result to the problem of maximizing a monotone submodular set function subject to

a matroid constraint and gave a randomized (1 − 1
e
)-approximation algorithm [21].
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For a knapsack constraint Khuller et al. [55] show the simple greedy algorithm also

yields a (1 − 1
e
)-approximation. More recently these results have been extended to

problems with multiple constraints [63, 59].

Most relevant to our work is the work of Khuller et al. [55] who suppose that

each element u ∈ U is associated with a cost c(u) and the cost c(S) =
�

u∈S c(u).

Their problem is to find a subset S ⊆ U with maximum f(S) from among all sets

S ⊆ U satisfying c(S) ≤ B, they call this the Budgeted Maximum Coverage (BMC)

problem. The BMC problem has been used in applications similar to ours by Leskovec

et al. [65] and El-Arini et al. [34] to monitor the blogosphere.

Our budgeted maximization problem turns out to be fundamentally different

on account of its cost structure. Because a thread is only flagged once, the cost

c({u, u�}) of monitoring two users u, u� ∈ U , could be much smaller than c(u) +

c(u�) because of substantial overlap in the unimportant threads in which u and u�

participate. Later we consider the greedy algorithm of Khuller et al. [55] that yields

a constant-factor approximation for the BMC problem and construct a simple instance

of our problem for which this greedy algorithm performs arbitrarily poor. We also

show a reduction from the densest k-subhypergraph problem [49] to our problem which

indicates that our problem cannot be approximated within a factor of O(2(log(n))
δ
) for

some δ > 0 under the assumption that 3− SAT �∈ DTIME(2n
3
4+�

).
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5.0.2 Results

We model the problem of monitoring a listserv, such as the EIN, as a type of

budgeted maximum coverage problem. Even though our problem seems superficially

similar to the budgeted maximum coverage problem considered by Khuller et al.

[55], from an algorithmic point of view they are fundamentally different. The budget

constraint of Khuller et al. [55] is linear, whereas ours is not. We show that the simple

greedy algorithm that works well for the problem of Khuller at al. performs arbitrarily

poor on some instances of our problem. Furthermore, by showing a reduction from the

densest k-subhypergraph [49] problem we show that in general our problem cannot be

approximated within a factor of O(2(log(n))
δ
) for some δ > 0 under the assumption that

3−SAT �∈ DTIME(2n
3
4+�

). Nevertheless, experimental runs of the greedy algorithm

on the EIN data show that greedy performs remarkably well relative to OPT. We

identify a possible feature of our EIN data, that we call the overlap condition, and

show that the greedy algorithm does indeed provide a constant-factor approximation

guarantee if the overlap condition is satisfied. Using an implementation of our greedy

algorithm on the EIN data, we select a set of “bellwether” users to track and reduce

the work involved in monitoring the EIN for a year by over 75%. Additionally, we

validate our experiments by showing that the set of users we select will flag all of the

important threads and the number of “noisy” threads (false-positives) is low.
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5.1 The Reward-Cost Model

Let T denote the set of threads, U denote the set of users, and G = (T, U,E)

denote the user-thread graph, a bipartite graph with edges {u, t}, u ∈ U , t ∈ T ,

whenever user u participates in thread t. We will make the notion of participation

precise later. For any u ∈ U , let N(u) denote the threads that user u participates

in and for any subset S ⊆ U of users let N(S) = ∪u∈SN(u). Associated with each

thread t ∈ T , there is a probability p(t) of thread t being important and a positive

weight w(t). For any subset S ⊆ U of users, we define the set functions r : 2U → R+

and c : 2U → R+ as:

r(S) =
�

t∈N(S)

p(t) · w(t)

c(S) =
�

t∈N(S)

(1− p(t)) · w(t)

In this paper we focus on the deterministic setting where p(t) ∈ {0, 1} for each t ∈ T

and use T+ to denote important threads, i.e., those threads t with p(t) = 1, and

T− to denote unimportant threads, i.e., those threads t with p(t) = 0. For ease of

exposition we assume w(t) = 1 for all t ∈ T . The budgeted maximization problem with

overlapping costs (BMOC) problem takes as input a user-thread graph G = (U, T, E),

probabilities p : T → [0, 1], weights w : T → R+, a B ∈ R+ and aims to find a subset

S ⊆ U that maximizes r(S) while satisfying the budget constraint c(S) ≤ B.

5.1.1 Choosing Important Threads

One way to classify threads into important and unimportant threads is to con-

sult infectious disease specialists. For example, one might survey EIN subscribers or
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Threads Users Posts Mailings per thread Posts per thread People per thread
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

2833 1451 13,502 2.85 1.00 18.00 4.77 1.00 58.00 4.417 1.0 34.00
±1.91 ±4.62 ±3.98

Figure 5.1: Summary statistics for all EIN traffic from February 1997 through May
2009 including the average (± standard deviation), minimum, and maximum number
of mailings, number of posts, and number of users per thread.

have an online rating system in place. Since these approaches suffer from low response

rate and are not currently in place, we develop an automated procedure for picking

important threads by assuming that any thread worth monitoring closely will have

sufficient EIN activity and therefore such threads can be identified by characteristics

such as (a) number of mailings, (b) number of posts, and (c) number of distinct par-

ticipants. Summary statistics of threads with respect to each of these characteristics

are shown in Figure 5.1. The distributions of the number of threads with respect to

each of these characteristics are heavy-tailed.

One simple way to pick “important” threads by paying attention to all three

characteristics is the following. Let M∗ be the maximum number of mailings in any

thread, P ∗ be the maximum number of posts in any thread, and D∗ be the maximum

number of distinct participants in any thread (see Figure 5.1). Further, let M(t),

P (t), and D(t) denote the number of mailings, posts, and distinct users for thread t

respectively. For a threshold thresh, 0 ≤ thresh ≤ 100, we let T+(thresh) = {t ∈

T |M(t) ≥ thresh · M∗} ∩ {t ∈ T |P (t) ≥ thresh · P ∗} ∩ {t ∈ T |D(t) ≥ thresh ·

D∗}. Simply put, the important threads are threads that have higher than thresh

percentage of the maximum value for mailings, posts, and distinct users.
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Figure 5.2(a) shows the cardinality of T+(thresh) for each thresh, 0 ≤ thresh ≤

100.

5.1.2 Criteria for Participation

Since we are interested in early detection of potentially interesting threads, we

focus on posts to a thread that are made very early on in life the thread. Specifically,

given a parameter m we say that a user u participates in a thread t if u posts to t

with the first m mailings of t. In our experiments, we use values 1, 2, and 3 for m.

5.2 A Greedy Algorithm for BMOC

Khuller et al. [55] present a simple greedy algorithm for the budgeted maxi-

mum coverage problem in which the budget constraint is linear and show that this

algorithm guarantees a 1
2

�
1− 1

e

�
-factor approximation ratio. When combined with

an enumeration technique, this algorithm provides a
�
1− 1

e

�
-factor approximation

ratio. To state this greedy algorithm in the context of our problem, we need notation

for incremental reward and cost of adding a user to our current solution. Let S ⊆ U

and u ∈ U \ S. Then,

r(S, u) = |{t ∈ T+ | t �∈ N(S), t ∈ N(u)}|

c(S, u) = |{t ∈ T− | t �∈ N(S), t ∈ N(u)}|

Algorithm 5.1 gives pseudocode for the greedy algorithm, which we callGreedy, com-

bining two algorithms, which we callGreedyRatio andGreedyReward. GreedyRa-

tio starts with an empty set S of users and repeatedly adds to S a user u who
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(a)

thresh Imp. Unimp.

60%

Mean Mailings 12.00 2.79
Mean # Distinct Users 25.11 4.28
Mean # Posts 33.28 4.58

70%

Mean Mailings 9.88 2.73
Mean # Distinct Users 20.23 4.14
Mean # Posts 25.06 4.41

80%

Mean Mailings 6.98 2.56
Mean # Distinct Users 14.79 3.69
Mean # Posts 16.95 3.91

(b)

Figure 5.2: Data on classification of important threads. (a) percentage of threads
whose number of mailings, number of posts, and number of participants are all
within thresh % of the corresponding maximum values of these characteristics. Since
T+(thresh) ⊇ T+(thresh�) for thresh > thresh�, we obtain larger sets of important
threads as we increase thresh from 60 to 80. With x = 60, we pick up 18 (out of
2818) important threads, with x = 70, we pick up 47 (out of 2818) important threads,
and with x = 80, we pick up 183 (out of 2818) important threads. (b) Aggregate
statistics of important threads for different values of thresh.



www.manaraa.com

159

maximizes r(S,u)
c(S,u) and whose addition to S does not violate the budget constraint.

Similarly, GreedyReward starts with an empty set S of users and repeatedly adds

to S a user u who maximizes r(S, u) and whose addition to S does not violate the

budget constraint. Let S � be the output of GreedyRatio and S �� be the output of

GreedyReward. The algorithm Greedy runs GreedyRatio and GreedyReward

and returns either S � or S ��, whichever has the greater reward.

It is easy to construct an instance of BMOC for which Greedy performs

arbitrarily poorly (see Figure 5.3).

x y1 y2 y3 yK
Figure 5.3: A user-thread graph with red vertices (circles) denoting unimportant
threads and blue vertices (squares) denoting important threads. For this instance
with budget B = 2, Greedy will pick x and obtain a reward of 1, whereas the
optimal solution consists of {y1, y2, . . . , yK} for a reward of K.

5.2.1 BMOC is Difficult to Approximate

Bad news about BMOC is that a special case of BMOC is at least as hard

as the Densest k-SubHypergraph problem. The Densest k-SubHypergraph

(DKSH) problem [49] takes as input a hypergraph G = (V,E) and seeks to find
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Algorithm 5.1 Greedy Algorithm for BMOC

1. GreedyRatio(U)
2. S � ← ∅
3. U � ← U

4. while U � �= ∅
5. Pick u ∈ U � that maximizes: r(S�,u)

c(S�,u)

6. if c(S � ∪ {u}) ≤ B
7. S � ← S � ∪ {u}
8. end if
9. U � ← U � \ {u}
10. end while
11. return S �

12. GreedyReward(U)
13. S �� ← ∅
14. U � ← U

15. while U � �= ∅
16. Pick u ∈ U � that maximizes: r(S ��, u)
17. if c(S �� ∪ {u}) ≤ B
18. S �� ← S �� ∪ {u}
19. end if
20. U � ← U � \ {u}
21. end while
22. return S ��

23. Greedy(U)
24. S � ← GreedyRatio(U)
25. S �� ← GreedyReward(U)
26. if r(S �) ≥ r(S ��)
27. return S �

28. else
29. return S ��

30. end if
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a subset of k vertices that induce a subhypergraph of G with maximum number of

edges. Assuming that 3−SAT �∈ DTIME(2n
3
4+�

), DKSH is inapproximable to within

a factor of O(2(log(n))
δ
), δ > 0. Further, DKSH is a generalization of the k-Densest

Subgraph (KDS) problem [40] for which the currently best known algorithm yields

an O(nα)-approximation where α < 1
4 [15]. Improving this approximation factor is an

important open problem in the area of approximation algorithms. There is a simple

reduction from DKSH to BMOC, originally sketched by Chekuri [25], which shows

that a β-approximation algorithm for BMOC will imply a β-approximation for DHSH

and subsequently KDS. Using this reduction we prove the following theorem.

Theorem 5.1. If there is a β-approximation algorithm for BMOC, there is a β-

approximation algorithm for Densest k-SubHypergraph.

Proof. Start with an instance {G = (V,E), k} of Densest k-SubHypergraph and

construct a user-thread graph H with thread set T = V ∪ E and user set U = E.

Designate E to be the important threads T+ and V to be the unimportant threads

T−. Corresponding to each hyperedge e = {u1, . . . , ui}, connect each user e ∈ U to

unimportant threads u1, . . . , ui and important thread e. Set the budget B to k. Let

us call a solution S ⊆ U maximal if for all users u ∈ U \ S, c(S ∪ {u}) > c(S). By

this definition we get the following claim,

Claim 1. G has an induced subhypergraph with k vertices and m edges iff H has a

maximal subset S of users with c(S) = k and r(S) = m.
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Proof. Fix a set of k vertices in G and suppose they induce a subhypergraph G� of

m edges. Let S denote the set of m edges in G� thus c(S) = k and r(s) = m by the

construction of H. Now suppose that S is not maximal. Then there exists at least

one user e ∈ U , corresponding to an edge in G which can be added to S such that

c(S ∪ {e}) = c(S) = k and r(S ∪ {e}) = m+1. This means G� has m+1 edges which

is a contradiction and thus S is maximal.

Now let S be a maximal subset of users in H with c(S) = k and r(S) = m.

By the definition of the cost function c there are k unimportant threads connected

to S corresponding to k nodes in G. Let G� be the subhypergraph induced by these

k nodes. Because S is maximal, there is no user e, corresponding to an edge in G,

which can be added to S without c(S ∪ {e}) > c(S). By construction of H, each

user e corresponds to a single important thread e and since r(S) = m, the induced

subgraph G� has exactly m edges.

Now suppose there exists a β-approximation algorithm A for BMOC. Start

with an instance {G, k} of the DKSH, transform it as specified above to an instance

of BMOC {H, k} and run A on it. The solution generated is a set of users S such

that

c(S) ≤ k, r(S) ≥ β ·OPT

where OPT is the maximum reward of a subset S∗ of users in H satisfying c(S∗) ≤ B.

Note that |S∗| = r(S∗) = OPT , since each user is connected to exactly one important

thread in H by the reduction from G. Without loss of generality suppose that both

S and S∗ are maximal. By the above claim, S∗ corresponds to a size OPT set of



www.manaraa.com

163

edges in G induced by a set of no more than k vertices V �∗. Similarly, S corresponds

to a set of edges in G induced by a set of no more than k vertices, V �. Note that S∗

is an optimal solution to BMOC iff V �∗ is an optimal solution to DKSH. Thus OPT

is maximum number of edges induced by any subset of no more than k vertices in

G. And since |S| ≥ β · |S∗| = β · OPT , V � induces a subgraph of size no less than

β ·OPT .

5.2.2 The Overlap Condition

In the bad example for the greedy algorithm in Figure 5.3, the unimportant

threads have high average degree (i.e., (2K + 1)/3) relative to the average degree of

important threads (which is just 1). While this is possible in general for BMOC, our

specific criteria for identifying important and unimportant threads from the EIN data

makes this unlikely for our instances of the problem. We now formalize this heuristic

notion, calling it the overlap condition and show that if we assume that the overlap

condition holds, then Greedy provides a 1
2(1−

1
e
)-approximation. In fact, assuming

the overlap condition we can obtain a (1 − 1
e
)-approximation by using Greedy in

combination with the enumeration technique described by Khuller et al. [55].

Let Si denote the set of the first i users selected by GreedyRatio. Denote

the remaining users, i.e., U \ Si as Ui and let Gi denote the bipartite graph obtained

from the user-thread graph G by deleting Si ∪N(Si). Thus the users in Gi are those

in Ui and the threads in Gi are those that are not “covered” by users in Si. For

any subset U � ⊆ Ui of users, let Gi[U �] denote the bipartite subgraph of Gi induced
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by U � ∪ N(U �). Let δ+(i, U �) (respectively, δ−(i, U �)) denote the average degree of

the important (respectively, unimportant) threads in Gi[U �]. We define the overlap

condition as:

∀i, ∀U � ⊆ Ui : δ
+(i, U �) ≥ αi · δ−(i, U �) (5.1)

where αi is a constant. Let r(Si, U �) (respectively, c(Si, U �)) denote the number of

important (respectively, unimportant) threads in N(U �) \N(Si). It is easy to verify

that

δ+(i, U �) =

�
u∈U � r(Si, u)

r(Si, U �)

δ−(i, U �) =

�
u∈U � c(Si, u)

c(Si, U �)
.

and therefore the overlap condition can be equivalently stated as

∀i, ∀U � ⊆ Ui :

�
u∈U � r(Si, u)

r(Si, U �)
≥ αi ·

�
u∈U � c(Si, u)

c(Si, U �)
. (5.2)

By definition of the overlap condition, after i users have been chosen,

αi = min
U �⊆Ui

δ+(i, U �)

δ−(i, U �)
.

Note that αi is bounded above by 1 because when U � = {u}, a single user, δ+(i, U �) =

δ−(i, U �) = 1.

Let OPT be an optimal set of users. Suppose that after some number of itera-

tions, GreedyRatio has selected a set S of users. In the next iteration, GreedyRa-

tio considers an element u �∈ S that maximizes r(S,u)
c(S,u) . This element may or may not

be added to S depending on whether adding u to S causes the budget constraint to be

violated. Suppose that r is the number of iterations executed by GreedyRatio until
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the first user u ∈ OPT is considered, but rejected (due to violation of the budget

constraint). Suppose that � users have been selected by GreedyRatio during these

r iterations. Label these users u1, u2, . . . , u� in the order in which they were selected

by GreedyRatio and let u�+1 be the first user in OPT considered but rejected. Let

ji be the iteration in which user ui was considered and let S0 = ∅, Si = Si−1 ∪ {ui}

for each i = 1, 2, . . . , �.

The following lemma uses the overlap condition to extend the key lemma in

[55] to instances of BMOC in which the overlap constraint holds. The calculations

in the subsequent lemmas are similar to those in [55] but are included mainly for

completeness.

Lemma 5.2. If the overlap condition is satisfied, then after each iteration ji, i =

1, 2, . . . , �+ 1,

r(Si−1, ui) ≥ αi−1 ·
c(Si−1, ui)

B

�
r(OPT )− r(Si−1)

�
.

Proof. For each user u ∈ OPT \Si−1, due to the greedy choice of ui, the ratio
r(Si−1,u)
c(Si−1,u)

is at most r(Si−1,ui)
c(Si−1,ui)

. Therefore,

�
u∈OPT\Si−1

r(Si−1, u)�
u∈OPT\Si−1

c(Si−1, u)
≤ r(Si−1, ui)

c(Si−1, ui)
. (5.3)

According to the overlap condition,

�
u∈OPT\Si−1

r(Si−1, u)�
u∈OPT\Si−1

c(Si−1, u)
≥ αi−1 ·

r(Si−1, OPT \ Si−1)

c(Si−1, OPT \ Si−1)
.

Combining this with (5.3) yields

αi−1 ·
r(Si−1, OPT \ Si−1)

c(Si−1, OPT \ Si−1)
≤ r(Si−1, ui)

c(Si−1, ui)
. (5.4)
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Substituting into the above inequality the fact that c(Si−1, OPT \Si−1) ≤ c(OPT ) ≤

B, we get

r(Si−1, OPT \ Si−1) ≤
B

αi−1
· r(Si−1, ui)

c(Si−1, ui)

Further, r(OPT )− r(Si−1) is at most r(Si−1, OPT \ Si−1) which leads to

r(OPT )− r(Si−1) ≤
B

αi−1
· r(Si−1, ui)

c(Si−1, ui)

Moving terms around, yields the lemma.

Lemma 5.3. If the overlap condition holds, then for iterations ji, i = 1, 2, . . . , �+ 1,

r(Si) ≥
�
1−

i�

k=1

�
1− αi−1

c(Sk−1, uk)

B

��
r(OPT )

Proof. The proof follows by induction on the iterations ji, i = 1, 2, . . . , � + 1. The

base case j1 comes from setting i = 1 and using Lemma 5.2 which gives us

r(S1) = r(S0, u1) ≥ α0
c(S0, u1)

B
r(OPT ).

Assuming the lemma holds for iterations ji, i = 1, .., i− 1 we show it holds for ji:

r(Si) = r(Si−1) + r(Si−1, ui)

≥ r(Si−1) + αi−1
c(Si−1, ui)

B
(r(OPT )− r(Si−1))

=

�
1− αi−1

c(Si−1, ui)

B

�
r(Si−1) + αi−1

c(Si−1, ui)

B
r(OPT )

≥
�
1− αi−1

c(Si−1, ui)

B

�
·
�
1−

i−1�

k=1

�
1− αi−1

c(Sk−1, uk)

B

��
r(OPT ) +

αi−1
c(Si−1, ui)

B
r(OPT )

=

�
1−

i�

k=1

�
1− αi−1

c(Sk−1, uk)

B

��
r(OPT )
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where the first inequality follows from Lemma 5.2 and the second inequality follows

from inductive hypothesis.

Theorem 5.4. If an instance of the user-thread graph G = (U, T, E) satisfies the

overlap condition with respect to � iterations of the Algorithm GreedyRatio then the

set S of users returned by Algorithm Greedy satisfies

r(S) ≥ 1

2

�
1− 1

eα

�
·OPT,

where OPT is the maximum reward associated with any set of users whose cost is at

most the budget B and α is the average value of αi, i = 0, . . . , �.

Proof. Consider iteration � + 1. Using lemma 5.3 and the fact that c(S�+1) > B we

have:

r(S�+1) ≥
�
1−

�+1�

k=1

�
1− αk−1

c(Sk−1, uk)

B

��
r(OPT )

≥
�
1−

�+1�

k=1

�
1− αk−1

c(Sk−1, uk)

c(S�+1)

��
r(OPT )

≥
�
1−

�
1− α

�+ 1

��+1
�
r(OPT )

≥
�
1− 1

eα

�
r(OPT ).

The third inequality follows from the fact that

�
1−

�+1�

k=1

�
1− αk−1

c(Sk−1, uk)

c(S�+1)

��

has minimum value 1 − (1 − α/(� + 1))�+1 when α0c(S0, uk) = · · · = α�c(S�) =

αc(S�+1)/(�+ 1) and α =
��+1

k=1 αk−1

�+1 . Thus,

r(S�+1) = r(S�) + r(S�, u�+1) ≥ (1− 1

eα
)r(OPT )
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Note that the reward given by GreedyReward, r(S �) ≥ r(S�), and since r(S0, u�+1) is

at most the maximum reward for a single user, the reward given by GreedyReward,

r(S ��) ≥ r(S0, u�+1). This gives us:

r(S �) + r(S ��) ≥ r(S�) + r(S�, u�+1) ≥
�
1− 1

eα

�
r(OPT )

Therefore either the reward given by GreedyRatio, r(S �) or the reward given by

GreedyReward, r(S ��) is greater than or equal to 1
2

�
1− 1

eα

�
r(OPT ).

Notice that the α term denotes the average αi over every iteration i of the

GreedyRatio algorithm. Theorem 5.4 still holds as long as the overlap condition is

satisfied on average by a constant factor α.

We “tested” the overlap condition for the EIN data in a limited way by con-

sidering all pairs and triples of users (see Table 5.1). Specifically, when i = 0, Si = ∅,

Ui = U the overlap condition reduces to

∀U � ⊆ U : δ+(U �) ≥ α0 · δ−(U �),

where δ+(U �) (respectively, δ−(U �)) is the average degree of the important threads

(respectively, unimportant threads) in the subgraph of G induced by U � ∪N(U �).

5.3 Experiments on BMOC

Choosing a particular threshold thresh (60, 70, or 80), as described in Sec-

tion 5.1.1, induces a partition of the set of threads into important and unimportant

threads. By fixing a value for the participation parameter m (1, 2, 3, or ∞), as

described in Section 5.1.2, we fix the threads in which each individual participated.
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Table 5.1: Results from analyzing the overlap condition for user subsets U � ⊆ U of
pairs (|U �| = 2) and triples (|U �| = 3) in the user-thread graph with thresh = 80.

Pairs Triples

Total 271784 68456236
OC Holds 271490(99.98%) 68443062(99.98%)

Min. Factor (α0) 0.704 0.647
Avg. Factor (α0) 2.96 2.90

OC Holds shows the number of sets for which δ+(U �) ≥ δ−(U �). Min. Factor and Avg.

Factor show the smallest value and average value of δ+(U �)
δ−(U �) over all U �.

Having fixed thresh and m, we consider all values of the budget B, starting with

B = 0, until we achieve full coverage of all important threads. Fixing values for

thresh, m, and B creates an instance of BMOC that we use as input to Greedy.

5.3.1 Greedy Performance

Figure 5.4 shows plots for solutions found by GreedyRatio and GreedyRe-

ward for instances with thresh = 80 and participation parameter values m = 2 and

m = 3. Recall that Greedy simply returns the better of the solutions produced by

GreedyRatio and GreedyReward. Results shown here are similar for all thresh

and m values we considered. We can view the reward of a solution returned by

GreedyRatio or GreedyReward as a function of B. Note that neither of these

functions are monotonic in B – simple examples are easy to construct for both al-

gorithms. As a result, one simple improvement to these algorithms is to consider

all values B� = 1, 2, . . . , B as the budget, run GreedyRatio and GreedyReward

with each value of B� as the budget, and return as a solution, the subset that has

maximum reward over all values of B�. Table 5.2 focuses on specific points on the
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plots in Figure 5.4, analyzing these more closely. In particular, this analysis focuses

on points that provide 50%, 75%, and 100% coverage of the important threads.

(a) (b)

Figure 5.4: Plots showing the reward of solutions produced by GreedyRatio and
GreedyReward with thresh = 80 and (a) m = 2 and (b) m = 3. The x-axis
shows the budget and the y-axis shows reward. The black line shows the reward from
GreedyRatio and the dashed line shows the reward from GreedyReward. The
dotted lines mark points of interest, corresponding to 50%, 75%, and 100% coverage
of important threads, discussed further in Table 5.2.

5.3.2 Analysis of Selected Users

The majority of active users on the EIN are doctors either in private practice,

with only clinical responsibilities, or at an academic institution, where they have

clinical and research responsibilities. Table 5.3(a) shows the distribution of users

selected by Greedy (for thresh = 80 and full coverage) by whether they are at an

academic institution, in private practice, or elsewhere. These results nicely match the

expectations of a third party infectious disease expert [94]; doctors in private practice
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Table 5.2: The cost of solutions that achieve 50%, 75%, and 100% coverage of impor-
tant threads (corresponding to points from the plots shown in Figure 5.4).

thresh m c

50% 75% 100%
1 164.0 404.0 949.0

80% 2 45.0 148.0 436.0
(185) 3 30.0 103.0 363.0

∞ 15.0 60.0 205.0

The key findings reported in this table are (a) the cost of full (respectively, 75%) coverage
is roughly 10 (respectively, 3) times the cost of half coverage and (b) relaxing the
requirement of early detection (i.e., increasing m from 1 to 3) decreases costs significantly.

tend to initiate more important threads, possibly because they have more clinical

experience and have fewer colleagues with whom they can discuss issues face-to-face.

Such users tend to turn to the EIN more frequently with important concerns. On

the other hand first responders and later responders in important threads tend to

be evenly distributed between doctors at academic institutions and those in private

practice. Table 5.3(b) shows that selected users (at thresh = 80, full coverage)

are geographically spread out quite evenly across the U.S. even though geographic

coverage was not a criteria used in our algorithms. Figure 5.5 shows the selected EIN

participants overlaid on a map of the United States.

There is also anecdotal evidence that users selected by our algorithm are indi-

cators of valuable information on the EIN. We gave the EIN manager a list of names

generated by Greedy, for threshold of T = 80 and m = 3, and one of the names on

the list raised a red flag for being unrecognizable. After reviewing some of their older

posts, the user was discovered to be an “untapped asset” to the EIN and is now being
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Table 5.3: Statistics for sample runs of Greedy algorithm.

(a)
m Total Academic Private Other Unknown

1 126 30(32.97%) 57(62.64%) 4(4.40%) 35
2 161 34(45.33%) 34(45.33%) 7(9.93%) 86
3 158 36(48.65%) 32(43.24%) 6(8.11%) 84
∞ 186 33(42.86%) 35(45.45%) 9(11.69%) 109

(b)

m Avg Distance (±) Max Distance

2 230.57(±169.23) 885.08
3 212.89(±141.28) 714.59

(a) Distribution of users selected by Greedy (with thresh = 80, full coverage) by whether
they are at an academic institution, private practice, or elsewhere. The column Total
shows the total number of users selected by our algorithm.
(b) The geographic spread of users selected by Greedy (with thresh = 80, full coverage)
is shown here. For example, with m = 2, every point in the continental U.S. is within 231
miles of a selected user, on average. These statistics were obtained by sampling 10 million
points uniformly at random; more accurate results can be obtained by constructing
Voronoi diagrams.

Figure 5.5: Map of selected users for full coverage at thresh = 80 and m = 3.
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utilized as an indicator of important threads by the EIN manager and is regularly

consulted on emerging epidemiological and clinical issues.

5.3.3 Analysis of Selected Threads

Using the procedure mentioned in the introduction, the set S of selected users

can be used to mark threads as “to be monitored.” Ideally, we would like the number

of “to be monitored” threads small relative to the total number of threads. Table

5.4(a) shows the number of threads and posts observed in 2007 and the number of

threads that would have been marked and number of posts that would have been

read, had this procedure been in place then. For both m = 2 and m = 3, the number

of marked threads are about a fourth of the total and the number of posts are about

a third of the total. Per-day traffic levels, with and without use of the monitoring

procedure, are given in figure 5.6 for full coverage and m = 2 (figure 5.6(a)) and

m = 3 (figure 5.6(b)) for the 2007 year. Table 5.4(b) shows, for each value of m, the

mailing at which important threads would have been marked using this procedure.

Note that our measurement only counts posts as needing to be reads after a thread

has been marked as important, explaining why for m = 3 the number of posts read

decreases. Together the two tables show that as we go from m = 2 to m = 3 the cost

of monitoring falls (40 threads to 38 threads, 144 posts to 140 posts) accompanied by

a delay in marking a few threads (5). 5.6(b) respectively,
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(a)

(b)

Figure 5.6: Plots of per-day post traffic on the EIN, averaged over seven days, in
2007. Results are from running Greedy with thresh = 80, full coverage, and (a)
m = 2 and (b) m = 3. Gray levels show the total number of posts to the EIN. Black
levels indicate the number of posts to marked threads only.
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Table 5.4: EIN traffic statistics for the year 2007 for full coverage at thresh = 80.

(a)

m Total Marked Imp. Unimp.

2
Threads 229 54 14 40
Posts 1015 314 170 144

3
Threads 229 52 14 38
Posts 1015 289 149 140

(b)

Mailing Marked
m 1st 2nd 3rd

2 2 12
3 2 7 5

5.3.4 An Upper-Bound to Greedy

An instance of BMOC, {G,B}, with user-thread graph G = {U, T = T+ ∪

T−, E} and budget B, can be formulated as an integer linear program (IP) in the

following way. Let variable ui correspond to user i ∈ U , variable gj correspond to

important thread j ∈ T+, and variable bk correspond to unimportant thread k ∈ T
�
.

To simplify and abuse a bit of notation, let i ∈ j denote all users i such that i

participate in thread j. Solving the following IP will give a solution S = {i|ui = 1}

to BMOC.
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max
�

j

gj

subject to gj ≤
�

i∈j

ui ∀i

ui ≤ bk ∀i ∈ k, ∀k
�

k

bk ≤ B

ui, gj, bk ∈ {0, 1} ∀i, ∀j, ∀k

If we relax the integer constraints on ui, gj, bk we get a linear program (LP)

whose solution is an upper bound to the BMOC problem. Figures 5.7(a) and 5.7(b)

compare the results of our greedy algorithm with the upper bound obtained by solving

the LP relaxation of the above IP. Since solutions to the LP can be fractional, the

objective function solutions to the LP can also be fractional, but since the solution

to the BMOC problem cannot be fractional, we take the floor for the objective value

given by the LP. From the figures we see the solution returned by Greedy achieves

the upper bound except in a few cases where it is only slightly worse.

While BMOC is difficult to approximate in general, our experiments show that

Greedy performs near-optimal on the EIN data. This can only partly be explained

by overlap condition mentioned earlier. Even if we assume the overlap condition

holds in our data, these plots suggest that Greedy produces solutions for instances

of BMOC based on our data that greatly exceed a (1−1/e)-approximation guarantee.
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(a)

(b)

Figure 5.7: Plots comparing the performance of Greedy with a upperbound obtained
by solving the LP relaxation of BMOC for thresh = 70 with (a)m = 2 and (b)m = 3.
The x-axis is the budget and the y-axis is the reward. The black line shows the reward
produced by the Greedy and the shaded line shows the upper bound obtained using
the LP.
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A small improvement is obtained by enhancing Greedy with a small “look-

ahead.” That is, at each step we can consider adding a subset of users, such as

pairs or triples, rather only considering single users. Figure 5.8 shows the same plots

as in section5.3.1 with the additional results found by modifying the GreedyRatio

algorithm to consider pairs of users u, u
� ∈ U at each iteration. While it doesn’t

make a significant improvement overall, the improvements are noticeable. With a

very minor modification to the algorithm we find a better solution, at the cost of

running time. We could improve this solution further by considering triples, or larger

subsets, of users.
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(a)

(b)

Figure 5.8: Plots showing the (small) improvement obtained by enhancing Greedy
with “look-ahead;” all subsets of size at most 2 are considered as candidates in each
iteration. Here thresh = 80 and m = 2. The x-axis is the budget and the y-axis is the
reward. The black line shows the reward produced by Greedy without “look-ahead”
and the dashed line shows the improvement due to “look-ahead.” (a) shows the full
plot and (b) shows the zoomed portion given by the box in (a).
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

In the preceding chapters we have addressed a number of important practical

concerns of applying social networks in epidemiology. All our research is threaded by

the use of social networks to model possible disease transmitting interactions between

healthcare workers in a hospital and online interactions between infectious disease

experts on a mailing list. Even though our networks are generated from specific data,

our results can easily extend to social networks that arise elsewhere. We conclude

with a brief summary of results from each chapter and related work.

6.1 Generating HCW Contact Networks

We have first addressed the problem of using fine-grained spatiotemporal data

to infer contact networks. By using our method on login data from an Electronic

Medical Record (EMR) system we have constructed complex networks that approx-

imate the contact patterns of healthcare workers (HCWs) in the University of Iowa

Hospitals and Clinics. Further, we have shown evidence that these HCW contact

networks are similar to other real-world social networks.

There are a number of alternate ways, briefly discussed in Section 2.2, we can

model the EMR login data from the University of Iowa Hospitals and clinics. For

example, we can model this data as bipartite graph of people and locations where

edges connect people to the locations where they access the EMR system. These

graphs could be used to address optimization problems related to resource placement
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or architecture design.

We have also not addressed the issue of validating of the HCW contact net-

works we construct. Recent work at the University of Iowa is exploring the use of

wireless “badges”, worn by HCWs and patients, to detect and record the proximity

of individuals [31] and monitor hand-hygiene events [96]. It is possible that this data

can be used to confirm the quality of our EMR login data and the HCW contact

networks we generate.

6.2 Random Graph Models of Contact Networks

Using the networks we generate we have uncovered a number of caveats for

using a particular random graph model for the study of disease diffusion. Simulation

results suggest that random graph models, which only preserve vertex local prop-

erties such as average degree and degree sequence, may ignore structural properties

important to accurate modeling of disease diffusion. More specifically, depending on

the transmissibility of the disease being simulated, these random graph models tend

to overestimate or underestimate the rate and number of infections. This difference

may be due to the fact that these random graph models preserve one or more feature

of the original graph and then allow mixing of all other aspects. Comparing mean

and median values over multiple simulations suggests that, compared to Erdös-Rényi

(ER) random graphs, outbreaks are less common on our HCW contact networks but,

when they do occur, they are much more extensive. In addition, we have also intro-

duced a new spatial-clustering model for the generation of random graphs with given
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clustering coefficient that, unlike other recently proposed models, generate graphs

that have the exact degree sequence and similar clustering as our HCW contact net-

works. This suggests that the clustering we see in the HCW contact networks may

be partially due to the spatial behaviour of individuals encoded in login data that we

use to generate these graphs. Based on simulations on random graphs with specified

clustering and degree sequence, clustering appears to play a minimal role on the out-

come of disease diffusion. On the other hand, random graph models that preserve

assortativity (degree correlations between the endpoint vertices of edges) may be the

best representatives of our HCW contact networks.

While we have compared our HCW contact networks to graph models which

preserve clustering and assortativity independently, we have not yet tested random

graph models that preserve both clustering and assortativity. It is possible that ran-

dom graph models that preserve both assortativity and clustering coefficient, in ad-

dition to degree sequence, may be the most accurate models for our HCW contact

networks. Extending the Spatial-Clustering random graph model to incorporate both

clustering and assortativity seems simple in theory, but as with the clustering models

presented by Newman [87] and Bansal et al. [8], there may be practical concerns in

actually generating these graphs.

6.3 Vaccination Policies

Considerable effort has been spent on understanding the problem of finding

optimal vaccination policies. Our results show that the optimal set of individuals to
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vaccinate, in order to reduce disease diffusion, is highly dependent on the disease being

controlled and structure of the underlying contact networks. Thus, when deciding on

control policies based on analytical calculations and experiments, assumptions about

the underlying graph could lead to poor policy decisions. However, for our HCW

contact networks, results suggest that the best solution to the vaccination problem

is to pick the most well-connected individuals. This behavior is likely a result of the

high assortativity that we see in these networks and thus may be an intrinsic property

of highly assortative graphs arising elsewhere. Moreover, the policy of picking the

most “mobile” HCWs appears to be a fairly good solution and may be more easily

implemented in practice.

In general, there are a number of practical problems relating to quarantine,

isolation, and vaccination that can be modeled as optimization problems. One of our

original goals was to leverage properties of the HCW contact networks to provide

improved approximation guarantees to these problems. Based on the work presented

here, we believe there may be ways to improve approximation guarantees for opti-

mization problems on our HCW contact networks.

6.4 Budgeted Maximum Coverage

Finally, we have introduced the budgeted maximum coverage with overlapping

costs (BMOC) problem to model the problem of finding “key” users of a mailing

list for the purposes of disease surveillance. By leveraging possible properties of the

underlying social network we are able to show that a simple approach can give near-
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optimal results. These results can likely apply to other social networks.

The problem of identifying which threads on the EIN are “important” is still

open. Recall that we assume important threads are those that, roughly speaking,

have a high number of unique participants, have longevity, and have lots of traffic

(postings). It would be interesting to validate our assumption is valid by analyzing

the content of these postings using semantic analysis approaches.

The EIN also presents some other interesting problems with different appli-

cations. For example, the EIN regularly sends out targeted surveys so there may

be interest in finding key individuals based on aspects of their EIN participation

(geography, specialization, etc.) for matters of surveillance. There is also interest

in determining the “social network” of EIN user relationships which would, along

with data on EIN mailing list activity, expose some interesting problems on network

diffusion models.
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